
SWS Integration Guide

Introduction
Methods for sign

Methods for automatic and remote signature
Method signPades
Method signPadesMultiFieldName

Example of usage
Method signCades
Method signXades
Method signPkcs1
Method changePassword

Methods only for remote signature
Method getOtpList
Method sendOtpBySMS
Method openSession
Method getRemainingTimeForSession
Method closeSession

Methods for timestamp
Method timestamp

TimeStampPreferences
Method getAvailableTimestamps (since SWS v2.5.44)

How Sign the file
Credentials Object

For automatic and remote signature
Only for automatic signature
Only for remote signature

How works method getOTPList?
Sign with OTP SMS
Sign with OTP GENERATOR (App)
Sign with sessionKey

How obtain the sessionKey?
How to check if the sessionKey has expired or is valid
Destroy the session manually

Sequence diagram for signature with session with OTP App
Sequence diagram for signature with session and OTP SMS

Summarize
Populate the "buffer"
Signature Preferences

PadES Preferences
SignerImage

Use specific ttf (TrueTypeFont)
Cades Preferences
Xades Preferences
Level

How apply the timestamp
Manage signer device

Method changePassword
changePassword on automatic/eseal signature
changePassword on remote signature

Method getCertificate
Method getAvailableSignatures
Method getSignatures

Manage error in SWS
Method getErrors

Verify the signatures/timestamp in SWS
Method for verification of digital signatures: verifyWithPreferences
Method for verification of timestamps

Method verifyTimeStampResponse and verifyTimestampData
Method for verifyCertificate

Utilities for sign
getAvailableSignatureFieldNames

Example response
allSignatureFieldNamesWithPreferences

SignatureFieldPreferences
SignatureFieldName
SignatureDetails
PdfRectangle
Example response

Introduction
After installing and configuring your virtual appliance SWS or SaaS instance, now you can use their method to sign or apply timestamp. SWS have
two interfaces SOAP and REST. SOAP and REST standard interface is used for files under 80MB and REST big interface is used for files over 80MB.

SWS can manage some signature devices like:

automatic signature (her name starts with AHI or AHIP followed by numbers)
eSeal (her name starts with SHI or SHIP followed by numbers)
remote signature (her name starts RHI or RHIP followed by numbers)
disposable signature (her name starts with RHI or RHID followed by numbers)
long-lived signature (her name starts with RHIL or RHILD followed by numbers)

During the integration, you can see:only

eSeal like an automatic signature
disposable, long-lived like a remote signature

The remote signature is like an extension of the automatic signature because it requires the OTP code beyond username and password.

SWS supports three different types of signatures:

Pades: valid only for PDF files
Xades: valid only for XML files
Cades: valid for every type of file

Apply timestamp on files (according to standard RFC3161)

Each type of signature and timestamp has its web method, which is described in the next sections.

In this user guide, the examples will be shown using "SoapUI". This is a free tool which can be installed on every OS. It is possible to create SOAP
requests with this tool that invokes different web methods.

During the integration, the application client of SWS should recreate the same XML soap request created on SoapUI with his program language.

Methods for sign
SWS offer different method according to type of device signature. For example with automatic signature isn't possible to use the method
"sendOtpBySMS" because don't require the second factor for sign. Below will be described all methods offered by SWS.

 Sign interface#MethodgetAvailableSignatures

Methods for automatic and remote signature

The main methods used to sign (valid for remote and automatic signatures) are:

signPAdES Used for sign only PDF files

Used for sign only PDF files, the field signature must existsignPAdESMultiFieldName

signCAdES Used for sign every type of files

signXAdES Used for sign XML files

 Used for raw signature (require the client of SWS make the cryptographic envelope)signPkcs1

getSignatures allows obtaining the number of signatures, since the certificate was issued

 allows obtaining the certificate associated to signature devicegetCertificate

getAvailableSignatures allows obtaining the numbers of signatures (valid only for device NOT pay per use, otherwise an exception is generated)

 allows changing the password (PIN) of the devicechangePassword

Each method requires the Credentials object. In the next section, you will see how to populate this field.

Method signPades

In this table are defined the parameters required (IN) and the output (OUT) of this method:

signPades

Name Type Description IN/OUT

credentials Credentials See the Credentials section to see how to populate this object IN

buffer byte[] Byte array which you want to sign IN

PAdESPreferences PAdESPreferences Specify the details of PadesSignature. See the PadesPreferences section to populate the object IN

byte[] Byte array the files just signedcontaining OUT

Method signPadesMultiFieldName

In this table are defined the parameters required (IN) and the output (OUT) of this method:

https://confluence.namirial.com/display/SWS/Sign+interface#Signinterface-MethodgetAvailableSignatures

signPadesMultiFieldName AVAILABLE FROM VERSION 2.5.57

Name Type Description IN/OUT

credentials Credentials See the Credentials section to see how to populate this object IN

buffer byte[] Byte array which you want to sign IN

PAdESPreferences PAdESPreferences Specify the details of PadesSignature. See the PadesPreferences section to populate the object IN

PadesWithMultiFieldName Complex object with details about signatures and error (if present) OUT

PadesWithMultiFieldName

Here you can find a description of the complex object PadesMultiFieldName

PadesMultiFieldName

Name Type Description Included from SWS
version

signedContent byte[] File signed fully or partially 2.5.57

remainingFieldNam
es

List<String> List of unsigned fields (if the file signed is partially) 2.5.57

serviceError ServiceErr
or

Complex object with details about error. This field is populated if the "signedContent" is partially
signed

2.5.57

ServiceError

Here you can find a description of the complex object ServiceError

ServiceError

Name Type Description Included from SWS version

code int error code generated during the signature 2.5.57

message String error message generated during the signature 2.5.57

NOTE: for example if you want sign a PDF wih 10 fields signatures ("field-1", "field-2", ... "field-10") using the sessionKey after 6 signatures the
session key has expired in output will receive this response:

ResponseMultiFieldName

signedContent = PDF with 6 signatures (the fields signed are: "field-1", "field-2",...,"field-6"
remainingFieldNames = ["field-7","field-8","field-9","field-10"]

IMPORTANT!!!,
The serviceError will be:

serviceError.code = 69
serviceError.message = "SessionKeyScaduta"

Example of usage

In this sequence diagram, you can see usage standard (when the):session key no expire

In this use case we are signing the signatures fields ("Field-1", "Field-2" and "Field-3") of "pdf_to_sign" and SWS make all three signatures required
without problem returning the "pdf_fully_signed"

Below you can find a sequence diagram that explains the method "signPadesMultiFieldName" when the :session key expire

In this use case our target is: sign 3 fields ("Field-1", "Field-2" and "Field-3") of "pdf_to_sign" using a session key.

Make the request using "signPadesMultiFieldName" and after two signature the session key has expire.

Therefore the response will be

the pdf_partially_signed (contains two signatures)
ServiceError contain the details about error (in this example session key expired)
List of unsigned fields: Field-3

To complete all three signatures we must:

generate "new_sessionKey"
make a new request of signPadesMultiFieldName using pdf_partially_signed and set "Field-3" ad list fields to sign

Finally, in response we obtain the pdf_fully_signed!!!

Method signCades

I parameters required (IN) and the output (OUT) of this method:n this table are defined the

signCades

Name Type Description IN/OUT

credentials Credentials See the Credentials section to see how to populate this object IN

buffer byte[] Byte array that you want to sign IN

CAdESPreferences CAdESPreferences Specify the details of PadesSignature. See the CadesPreferences section to populate this object IN

byte[] List of byte array the file just signedcontaining OUT

Method signXades

I parameters required (IN) and the output (OUT) of this method:n this table are defined the

signXades

Name Type Description IN/OUT

credentials Credentials See the Credentials section to see how to populate this object IN

buffer byte[] Byte array that you want sign IN

XAdESPreferences XAdESPreferences Specify the details of XadesSignature. See the XadesPreferences section to populate this object IN

byte[] Byte array containing the file just signed OUT

Method signPkcs1

I parameters required (IN) and the output (OUT) of this method:n this table are defined the

signPkcs1

Name Type Description IN/OUT

credentials Credentials See the Credentials section to see how to populate this object IN

buffer byte[] hash associated the file you want sign IN

SignPreferences SignPreferences Specify the hash algorithm used to sign the hash IN

byte[] Byte array containing the hash associated to the file just sgned OUT

NOTE: SignPreferences is a complex object, the method require only the field: SignPreferences.hashAlgorithm

And the value can be:

SHA-256 (default value if not specified)
SHA-1
SHA-384
SHA-512

Method changePassword

I parameters required (IN) and the output (OUT) of this method:n this table are defined the

signXadesList

Name Type Description IN/OUT

credentials Credentials See the Credentials section to see how to populate this object IN

newPassword String String that contains the new password IN

VERY IMPORTANT: if the customer forgets the new password, it IS NOT POSSIBLE to recover/reset the password.

Methods only for remote signature

If you are signing with a , you can also use these methods:remote signature

getOTPList allows obtaining the list of OTPs associated with your remote signature (OTP is assigned to the owner of the certificate. For example, if
you have two or more remote signatures associated with the same owner, you can use this OTP for each remote signature).

sendOtpBySMS it will send an SMS containing the OTP code.

openSession allows obtaining the token (like a string) for the signature instead of inserting new OTP code for each signature). The token is available
for three minutes from generation.

getRemainingTimeForSession returns time until the session is valid

closeSession if you want to destroy the token before three minutes (however will expire after three minutes)

Method getOtpList

getOtpList

Name Type Description IN/OUT

credentials Credentials See the Credentials section to see how populate this object IN

List<OTP> List of OTP assigned to the Credentials OUT

Method sendOtpBySMS

sendOtpBySMS

Name Type Description IN/OUT

credentials Credentials See the Credentials section to see how populate this object IN

After this method is done the customer receive SMS with OTP code to use.s an an

Method openSession

openSession

Name Type Description IN/OUT

credentials Credentials See the section Credentials for see how populate this object IN

String Sessionkey to use for sign OUT

At the end of this method the customer will receive string with sessionKey for sign (credentials.sessionKey)

Method getRemainingTimeForSession

getRemainingTimeForSession

Name Type Description IN/OUT

credentials Credentials See the section Credentials for see how populate this object IN

int Seconds left until the session is valid OUT

Method closeSession

closeSession

Name Type Description IN/OUT

credentials Credentials See the section Credentials for see how populate this object IN

After this method is done the session is destroyed.

Methods for timestamp
SWS offer method appl timestamp and enquiry (only for Namirial accounts).s s for ying

timestamp the file with timestamp two types TSR or TSD. The TSR option mean the timestamp is another file, while allows to get ; there are s that in
TSD mean the timestamp signature is in the same file.s that

getAvailableTimestamps allows getting the timestamp; available ONLY for Namirial account.

Each method is described below with the required inputs.

Method timestamp

timestamp

Name Type Description IN/OUT

content byte[] Byte array to which the timestamp is applied. IN

preferences TimeStampPreferences Preferences about timestamp url, username, password, etc. IN

byte[] Timestamp in binary format. OUT

This method can be used with all timestamp account (not only Namirial) they must use standard RFC3161.

NOTE: Since SWS v2.5.44 this method support Adobe Timestamp timestampPreferences you should set "outputAsPDF=true".s . In the

TimeStampPreferences

Below will described how populate the preferences about timestamp

timeStampPreferences

Name Type Mandatory Default
value

Description Included from SWS
version

timestampUrl String yes Url for timestamp service

timestampUsername String yes Username for timestamp service

timestampPassword String yes Password for timestamp service

outputAsTSD boolean true
TRUE permits to obtain in output the file+timestamp
(TSD)
FALSE permits to obtain in output only timestamp
(TSR)

outputBase64Encoded boolean false return the output in base64 encode

outputAsPDF boolean false Allow to obtain the timestamp according to Adobe standard 2.5.44

timestampHashAlgo String SHA256 Hash algorithm used for generate the timestamp

Method getAvailableTimestamps (since SWS v2.5.44)

getAvailableTimestamps

Name Type Description IN/OUT

preferences TimeStampPreferences timestamp url, username, password IN

Long Number of timestamps available. An exception will be generated for the payperuse . OUT

NOTE: TimestampUrl can be set to:

TIMESTAMP URL Environment

https://timestamp.namirialtsp.com/enquiry PROD

https://timestamp.test.namirialtsp.com/enquiry TEST

How Sign the file
To sign the file with SWS method require parameters: each s

Credentials: contain the value about signature device;
Preferences: contain the details of the signature such as page, appearance etc., Level of signature (B, T, LT, etc.). There are different types
of preferences PadesPreferences, CadesPreferences, XadesPreferences;
buffer: file you want to sign.

In the sections will how set th s parameters next you learn to e e .

Credentials Object

All methods for sign (signPAdES..., signCAdES..., signXAdES) use the Credentials object, you can see in this table:ing as

Credentials

Name Type Description

username String Device name starts with: RHI (remote/disposable), SHI (eSeal) or AHI (automatic)

password String PIN associated to device name (can be set by the customer or read into blind envelope)

idOtp int otp identifier associated to device (used only in remote signature) can be SMS, App, Token . Every remote device can have
one or more idOtp (for example se

otp Strinng otp code for sign/change password (this is used only in remote device)

sessionK
ey

String string code (like a token) for sign (instead to insert every times new otp code)valid 3 minutes

securityC
ode

String This is the second factor (used in automatic and eSeal) for change the password. This code is linked to the portal account.

How th s fields?to fill in e e

For automatic and remote signature

For each type of signature (automatic signature and remote signature) you must fill in these two fields:

username: contains the device name starting with RHI..., AHI... or SHI...

password: contains the PIN associated to the device (read from the blind envelope or set by the customer)

Only for automatic signature

Only if you us the automatic signature (username starts with AHI... or SHI...) you should fill fields: e in these

securityCode: this parameter must not be set. It is used only in certain situations (for example during the change password)

Only for remote signature

Only if you us the remote signature (username starts with RHI...) you should fill fields: e in these

idOtp: (optional) specify the idOtp you want to use for the signature. If you do not want to set the idOtp, set idOtp to "-1" and SWS will automatically us
e the default OTP. You can use getOTPList method to get the idOtp;

Otp: contains the OTP code received via SMS or read in the Namirial app;

sessionKey: contains the token (like a string) received from openSession method;

How works method getOTPList?

With this method, you can the OTP list which can be use with specified , and you the Credentials.idOtp variable.get d the username can fill in

This method requires only the username.

getOTPList

Name Type Description IN/OUT

credentials Credentials You must specify only credentials.username with the device name (RHI...) IN

List<OTP> list of OTPs associated to device name OUT

The "OTP" object is compose by:

OTP

Name Type Description

idOtp int identifier otp used for sign/change password

serialNumber String this field isn't used by SWS, this is serial number printed on OTP token

type String The possible values are:

SMS
OTP PUSH (this value for SWS, this is used for other purpose)not consider
OTP GENERATOR (OTP showed on Namirial App)
FISICO (this is the otp token)

NOTE: with SWS is not possible to use the OTP with type "OTP PUSH".

Sign with OTP SMS

If you decide to sign with OTP SMS, you should use the method .sendOTPBySMS

sendOTPBySMS

Name Type Description IN/OUT

credentials Credentials You must specify only credentials.username with the device name (RHI...) IN

void will receive on your mobile phone the SMS with OTP code OUT

Sign with OTP GENERATOR (App)

If you decide to sign with OTP GENERATOR, you should open the Namirial OTP App and insert the OTP code shown during the signing process.

Show the guide "How to configure Namirial OTP App" (To Do/Add)

Sign with sessionKey

With otp it is possible to create only one signature, but if you need to sign more files, it is possible with “sessionKey”. The next section describes how
the session works.

This function is available only for remote signatures. It allows signing for a maximum of 3 minutes with the same sessionKey. You can see the session
like a token provided from the method “openSession”.

How obtain the sessionKey?

The “openSession” method obtaining the sessionKey. allows

Input requires:

username
password
otp
idOtp

openSession

Name Type Description IN/OUT

credentials Credentials You must specify:

credentials.username with the device name (RHI...)
credentials.password
credentials.idOtp
credentials.otp

IN

String will receive the session which will be used for sign will be the value of credentials.sessionKey OUT

The sessionKey is valid for three minutes from has been generated. With this is possible unlimited files.

How to check if the sessionKey has expired or is valid

 when the session expire with the method . This method require input:You can find out s getRemainingTimeForSession s

username
sessionKey (obtained from method "openSession")

getRemainingTimeForSession

Name Type Description IN/OUT

credentials Credentials You must specify:

credentials.username with the device name (RHI...)
credentials.sessionKey

IN

int seconds until the sessionKey is valid OUT

Destroy the session manually

The method requires in input:closeSession

sessionKey
username

closeSession

Name Type Description IN/OUT

credentials Credentials You must specify:

credentials.username with the device name (RHI...)
credentials.sessionKey

IN

the sessionKey will be destroyed OUT

NOTE: for security reasons, this method doesn't generate an exception if you insert the wrong sessionKey and/or username.

Sequence diagram for signature with session with OTP App

In this sequence diagram, we can summarise the methods that are for the signature with sessionKey and OTP SMS:

Sequence diagram for signature with session and OTP SMS

In this sequence diagram, we can summarise the methods that are called for the signature with sessionKey and OTP SMS:

Summarize

Finally, we have all the requirements to populate the Credentials object during the signing. As already mentioned, the methods for signing are:

signPAdES
signCAdES
signXAdES

There are the same methods with the suffix "List", they accept in input a list of files to be signed. Therefore with only SOAP requests is possible to
sign more files (using automatic signature or sessionKey).

With these three methods it is possible to sign with any type of signature (automatic and remote).

Each of these three methods uses the Credentials object filled in at the same time.

For the automatic signature, it requires only the username and password variables in the object Credentials.

If you use a remote signature, you should also fill in the other fields:

idOtp (only if you received multiple idOTP from the getOTPList)method
OTP or sessionKey (will see in the next section how to populate this variable)

Therefore for the automatic signature, the credentials object is composed by:

username
password

While for the signature, the credentials object is composed by:remote

username
password
otp
idOtp (only if you have more OTP, otherwise you can set this to "-1")
sessionKey (optional)

If you need to sign multiple files with remote signature you should use the sessionKey as described earlier.

Now, that we know how to fill the Credentials object for the methods: signPades, signCades and signXades, we can fill the object buffer.

Now we should populate the value of:

buffer
preferences of signature (there are different types for each type of signature)

Populate the "buffer"

The buffer contains the file (in byte array) you want to sign.

In SoapUI the buffer is composed of the base64 of file you want sign, in this example:, for example, the to as

REQUEST-remote-signPades

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ser="http://service.ws.nam
/">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:signPAdES>
 <credentials>
 <idOtp>501719</idOtp>
 <otp>548316</otp>
 <password>13572468</password>
 <username>RHIP20102336019765</username>
 </credentials>
 <buffer>BASE64-FILE-TO-SIGN</buffer>
 <PAdESPreferences>
 <level>B</level>
 <signerImage></signerImage>
 </PAdESPreferences>
 </ser:signPAdES>
 </soapenv:Body>
</soapenv:Envelope>

You can download the complete example at this link: signPadesList.xml

The output is the base64 associated with the file you just signed as follows: and dRESPONSE-base64-signPadesList.b64 ecoded will be this PDF: RE
.SPONSE-signPadesList.pdf

Signature Preferences

The difference between signPades, signCades and signXades is based on the :preferences

signPades use PadESPreferences

signCades use CadESPreferences

signXades use XadESPreferences

How to populate these preferences is described in the next sections.

PadES Preferences

This type of preference is used in method signPades. Their main options are:

PAdESPreferences

Name Type Mandatory Default
value

Description Included
from SWS
version

hashAlgorithm String SHA256 Algorithm you want to use for . Possible values are: SHA1, SHA256, SHA384, signature
SHA512.

level Level B See the description of Level type.

signType int

encryptInAny
Case

boolean false

filenameInTSD String Not used.

outputAsTSD boolean Not used.

withTimestamp boolean false Specify wheater you want to add the timestamp to the signed file or not,

outputBase64
Encoded

boolean false Set true if you want the file signed in Base64 encoding.

timestampHa
shAlgo

String SHA-256 Algorithm you want to use during the process of applying timestamp.

https://confluence.namirial.com/download/attachments/50234655/signPadesList.xml?version=1&modificationDate=1636637569148&api=v2
https://confluence.namirial.com/download/attachments/50234655/RESPONSE-base64-signPadesList.b64?version=1&modificationDate=1617185776893&api=v2
https://confluence.namirial.com/download/attachments/50234655/RESPONSE-signPadesList.pdf?version=1&modificationDate=1617185839268&api=v2
https://confluence.namirial.com/download/attachments/50234655/RESPONSE-signPadesList.pdf?version=1&modificationDate=1617185839268&api=v2

timestampUrl String URL of timestamp provider with standard RFC3161.

Namirial URL:

PROD: / https://timestamp.namirialtsp.com http://timestamp.namirialtsp.com

TEST: / https://timestamp.test.namirialtsp.com http://timestamp.test.namirialtsp.com

timestampUs
ername

String Username of timestamp credentials.

timestampPa
ssword

String Password of timestamp credentials.

needAppeara
nceDisabled

boolean false Deprecated.

page 1 Indicate the page number on which you want to apply the signature appearance. If you
want to add the appearance on the last page of the PDF file, you should set it to "-1".

withTimestamp boolean false Set true if you want to apply the timestamp after the signature.

encryptionPa
ssword

String Specify the password PDF, if present.

lockFields List<Str
ing>

signerImage SignerI
mage

See the description of SignerImage.

signerImageR
eference

String Used to specify the template to be used. (used in old version)

withSignature
Field

boolean false Set true if you want to apply the signature on signature field in the PDF file.

SignerImage

The SignerImage object is composed of the following:

SignerImage

Name Type Mandatory Default
value

Description Included from
SWS version

image byte[] Contains the image you want to apply to the appearance.

signerNa
me

String Contains the text you want to type to the appearance.

reason String Indicate the reason for the signature.

textVisible boolean true Allows the text to be shown on appearance or not.

textPositi
on

String Position of the "signerName" on appearance. It is possible to choose between:

TOP
BOTTOM
RIGHT
LEFT

x int X coordinate of the appearance (0 is on left of the page).

y int Y coordinate of the appearance (0 is on bottom of the page).

width int Specify the width of the appearance.

height int Specify the height of the appearance.

fieldName Specify the fieldname to which the signature is to be applied. This fieldName must
already exist in the PDF file before the signature is applied.

https://timestamp.namirialtsp.com
http://timestamp.namirialtsp.com
https://timestamp.test.namirialtsp.com
http://timestamp.test.namirialtsp.com

fontName String Times-
Roman

Specify the font to be used for the text on the appearance. The possible values are:

Times-Roman
Times-Bold
Times-Italic
Times-BoldItalic
Helvetica
Helvetica-Bold
Helvetica-Oblique
Helvetica-BoldOblique
Courier
Courier-Bold
Courier-Oblique
Courier-BoldOblique
Symbol
ZapfDingbats

OR

Specify the ttf absolute path which contain custom font (see this section below to use
specific ttf)

2.5.39

imageURL String URL to get the logo for appearance.

imageVis
ible

boolean false Allows the logo to be displayed or not when it appears.

fontSize int 10 Allows the fontsize to set set.

imageFil
ename

String Path of the logo on appearance.

scaled boolean false Set true if you want to resize the logo on appearance.

scaledTe
xt

boolean false Reduce the font size until fit on the appereance

location String Place of the signature. 2.5.53

fieldsNa
meList

List<Str
ing>

List of fields signatures you want sign 2.5.57

signAllFi
elds

boolean false Allow to sign all fields signatures available in a PDF 2.5.57

NOTE: if you are using the method "signPadesMultiFieldName", the property "signAllFields" have a priority on property "fieldsNameList"

Below an example of output in Adobe if you use the option "location" and "reason":

Use specific ttf (TrueTypeFont)

With SWS is possible to use a specific font specifying a path of ttf files. The fonts available are:

DejaVu
helvetica-neue

To use , you must set value of "fontName" (signerImage.fontName) with this value:Dejavu

/usr/share/fonts/dejavu/@FONTNAME@

The possible values of "@FONTNAME@" are:

DejaVuSans-BoldOblique.ttf
DejaVuSansCondensed-Oblique.ttf
DejaVuSansMono-Bold.ttf
DejaVuSans.ttf
DejaVuSans-Bold.ttf
DejaVuSansCondensed.ttf
DejaVuSansMono-Oblique.ttf
DejaVuSansCondensed-BoldOblique.ttf
DejaVuSans-ExtraLight.ttf
DejaVuSansMono.ttf
DejaVuSansCondensed-Bold.ttf
DejaVuSansMono-BoldOblique.ttf
DejaVuSans-Oblique.ttf

To use Helvetica-Neue, you must set value of "fontName" (signerImage.fontName) with this value:

/usr/share/fonts/helvetica-neue/@FONTNAME@

The possible values of "@FONTNAME@" are:

HelveticaBlkIt.ttf
HelveticaNeueBold.ttf
HelveticaNeueCondensedBlack.ttf
HelveticaNeueCondensedBold.ttf
HelveticaNeueMedium.ttf
HelveticaNeueUltraLightItal.ttf

Cades Preferences

With cades signature, it is possible to sign each type of file. The method requires:signCades

Credentials assigned to device signature;
Buffer, the file that you want to sign;
CAdESPreferences, the preferences about CAdES signature.

In the following table, you can see how to set the CAdESPreferences correctly:

CAdESPreferences

Name Type Mandatory Default
value

Description Included from SWS
version

filenameInTSD

outputAsTSD

outputBase64Enc
oded

boolean false Encodes the just signed file in base64.

timestampHashAl
go

String SHA-256 Algorithm you want to use during the process of applying timestamp.

timestampPassw
ord

String

timestampUrl String URL of the timestamp provider with the RFC3161 standard.

Namirial URL:

PROD: / https://timestamp.namirialtsp.com http://timestamp.namirialtsp.com

TEST: / https://timestamp.test.namirialtsp.com http://timestamp.test.
namirialtsp.com

timestampUserna
me

String Username of the timestamp credentials.

hashAlgorithm String yes SHA256 Algorithm which you want to use for signing. Possible values: SHA1,
SHA256, SHA384, SHA512.

https://timestamp.namirialtsp.com/
http://timestamp.namirialtsp.com
https://timestamp.test.namirialtsp.com/
http://timestamp.test.namirialtsp.com
http://timestamp.test.namirialtsp.com

level Level B See the description of Level type.

withTimestamp boolean false Set true if you want to apply the timestamp after the signature.

counterSignature

counterSignatureI
ndex

detached boolean false Set true if you want the signature and the files in two different files. The
output will be the signature.

Xades Preferences

With Xades Signature it is possible to sign only XML files, the signXades method requires:

Credentials assigned to device signature
Buffer, file that you want to sign
XAdESPreferences, the preferences about XAdES signature

In the following table you can learn how to set the XAdESPreferences correctly:

XAdESPreferences

Name Type Mandatory Default
value

Description Included from
SWS version

filenameInTSD

outputAsTSD

outputBase64Enco
ded

boolean false Encodes the just signed file in base64.

timestampHashAlgo String SHA-256 Algorithm you want to use during the process of applying timestamp.

timestampPassword

timestampUrl String URL of the timestamp provider with the RFC3161 standard.

Namirial URL:

PROD: / https://timestamp.namirialtsp.com http://timestamp.namirialtsp.
com

TEST: / https://timestamp.test.namirialtsp.com http://timestamp.test.
namirialtsp.com

timestampUsername String Username of the timestamp credentials.

hashAlgorithm String yes SHA256 Algorithm you want to use for signing. Possibile values: SHA1, SHA256,
SHA384, SHA512

level Level B See the description of Level type.

withTimestamp boolean false Set true if you want to apply the timestamp after the signature.

detached boolean false Set true if you want the signature and the files in two different files. The
output will be the signature.

detachedReference
URI

String

signElement String Allows to specify the "Id" on XML which you want to sign.

signatureId String Allows to specify the "Id" of the signature.

withoutSignatureEx
clusion

boolean false Allows to sign the file with/without previous signature.

XPathQuery String Allows to sign a specified path of XML

Level

You can see how to set the correct Level signature:

Level

V
al
ue

Description Apply on
signature

Included from
SWS version

https://timestamp.namirialtsp.com/
http://timestamp.namirialtsp.com
http://timestamp.namirialtsp.com
https://timestamp.test.namirialtsp.com/
http://timestamp.test.namirialtsp.com
http://timestamp.test.namirialtsp.com

B In the signed file the electronic signature and the signing certificate are added. Pades,
Cades,
Xades

T Like B-Level, but adds a time-stamp, respectively a time-mark that proves the signature existed at a certain date and time. Pades,
Cades,
Xades

LT Like T-Level, but adds VRI (Verification Related Information) data to the DSS (Long Term). Pades,
Cades,
Xades

L
TA

Like LT-level, but adds a time stamp document and VRI data for the TSA (Time Stamping Authority). An LTA may help to validat
e the signature beyond any event that may limit its validity (Long Term with Archive Time-Stamps).

Pades,
Cades,
Xades

L
TV

(Long Term Validation) contains the OCSP/CRL response after the signature. It is used for validation after the signing certificate
has expired.

Pades

How apply the timestamp

It is possible to apply timestamp with the method , in input require:timestamp

content: byte array of the file to which the timestamp is applied;
preferences: object containing details about timestamp.

Below the object timestamp:

Name Type Mandatory Default
value

Description Included from SWS
version

filenameInTSD

outputAsTSD

outputBase64Enco
ded

boolean false Encoded the file just signed in base64.

timestampHashAlgo String SHA-256 Algorithm you want to use during the process of applying timestamp.

timestampPassword

timestampUrl String URL of the timestamp provider with RFC3161 standard.

Namirial URL:

PROD: / https://timestamp.namirialtsp.com http://timestamp.
namirialtsp.com

TEST: / https://timestamp.test.namirialtsp.com http://timestamp.test.
namirialtsp.com

Manage signer device
As already mentioned, SWS offers a method for managing the signing device.

Method changePassword

This method requires a different signature according to device type: automatic/eseal or remote.

The output of this method will change the password.

NOTE: if the holder device forgets the new password, it IS NOT POSSIBLE TO RESET the password.

changePassword on automatic/eseal signature

Input requires:

credentials.username
credentials.password
credentials.securityCode
newPassword

In output (if input is correct) will have the password associated to credentials.usernam set to "newPassword".

https://timestamp.namirialtsp.com/
http://timestamp.namirialtsp.com
http://timestamp.namirialtsp.com
https://timestamp.test.namirialtsp.com/
http://timestamp.test.namirialtsp.com
http://timestamp.test.namirialtsp.com

changePassword on remote signature

Input requires:

credentials.username
credentials.password
credentials.idOtp
credentials.otp
newPassword

In output (if input is correct) will have the password associated to credentials.usernam set to "newPassword".

Method getCertificate

This method allow to obtain the certificate associated to signer device.

This method require same input for automatic and remote signature. Below the details:

Name Type Description IN/OUT

credentials Credentials You must specify:

credentials.username with the device name (RHI..., AHI, SHI)

IN

byte[] byte array of certificate associated to signer device OUT

Method getAvailableSignatures

This method allow to obtain the number of signaures available

This method require same input for automatic and remote signature. Below the details:

Name Type Description IN/OUT

credentials Credentials You must specify:

credentials.username with the device name (RHI..., AHI, SHI)

IN

int number of signatures availables OUT

NOTE: this method can't be used for signer device "pay-per-use" (device with unlimited signatures), will generate error with code: "56"

Method getSignatures

This method allow to obtain the number of signaures apposed since the device has been created

This method require same input for automatic and remote signature. Below the details:

Name Type Description IN/OUT

credentials Credentials You must specify:

credentials.username with the device name (RHI..., AHI, SHI)

IN

int number of signatures apposed OUT

Manage error in SWS
Each method can generate exception, for example PIN not correct, sessioneKey expired or OTP not correct.an

For example if we try to execute the signPAdESList method the same OTP we SOAP response with error 44, in this response: with , get the as

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Server</faultcode>
 <faultstring>Codice OTP errato, riprovare con il prossimo codice</faultstring>
 <detail>
 <ns2:WSException xmlns:ns2="http://service.ws.nam/">
 <error>44</error>
 <message>Codice OTP errato, riprovare con il prossimo codice</message>
 </ns2:WSException>
 </detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

By default, the error message is in the Italian language.

Below is the table description of all error messages SWS can generate during your execution method:

Error details

Error
number

Description

English Italian

0 No errors found Nessun errore riscontrato

1 Generic error Errore Generico

2 Virtual device not found Dispositivo virtuale inesistente

3 Virtual device locked Dispositivo virtuale bloccato

4 Wrong credentials Credenziali errate

5 Wrong emergency code Codice di emergenza errato

6 Virtual device status changes denied Modifiche allo stato del dispositivo virtuale negate

7 Signature error Errore nella firma

8 Error creating slot Errore nella creazione dello slot

9 Error deleting slot Errore nella eliminazione dello slot

10 PIN change error Errore nel cambio PIN

11 Key generation error Errore nella generazione chiave

12 Error in key management configuration Errore nella configurazione del sistema di gestione delle chiavi

13 Wrong company code Codice azienda errato

14 No available slots Nessuno slot disponibile

15 Virtual device already exists Dispositivo virtuale gia' esistente

16 Operation performed using a wrong certificate Operazione eseguita usando il certificato errato

17 Wrong virtual device code Codice dispositivo virtuale errato

18 Slot already used Slot gia' utilizzato

22 Incompatible file format for the signature type required Richiesta una firma di file di formato non compatibile con il tipo di firma richiesto

23 Unsupported hash algorithm Algoritmo di hash non supportato

24 Error decrypting CMS data Errore nella decifratura del CMS EnvelopedData

25 Error importing key and certificates Errore nell'importazione di chiave e certificati

26 The public key in the certificate does not match the
private key

Chiave pubblica nel certificato non corrisponde a quella privata

27 Web method denied for the credentials or ssl
certificate used

Eseguita una chiamata a web method mediante credenziali o certificato ssl non
abilitato per questa funzione

28 CA doesn't exist La CA inserita non esiste

29 The user didn't enter all required fields for the profile L'utente non ha inserito tutti i campi richiesti per il profilo

30 EJBCA error Errore di EJBCA

31 Authorization denied Autorizzazione negata

32 Error due to waiting for data approval Errore dovuto all'attesa per l'approvazione dei dati

33 Error approving the entered data Errore nell'approvazione dei dati inseriti

34 Illegal query Errore per query illegale

35 Certificate already revoked Certificato gia' revocato in precedenza

36 I / O error, caused by writing / reading / converting a
file / byte array / string

Errore di I/O, causato dalla scrittura/lettura/conversione di un file/array di byte
/stringa

37 Payment verification failed Verifica di pagamento non andata a buon fine

38 No available signatures Eseguite tutte le firme a disposizione

42 A denied feature is invoked in the current mode E' stata richiamata una funzionalita' non permessa nella modalita' corrente

43 A denied feature is invoked in the implementation used E' stata richiamata una funzionalita' non permessa nell'implementazione usata

44 Wrong OTP code, try again with the next code Codice OTP errato, riprovare con il prossimo codice

45 The key isn't associated to a certificate La chiave non ha associato un certificato

46 Unknown certificate format E' stato passato un certificato di formato sconosciuto

47 It isn't possible to open the slot Non e' stato possibile aprire lo slot

49 Key login error Errore di login sulla chiave

50 Error generating the CSR Errore nella generazione del CSR

51 The maximum number of attempts to access the
virtual device is reached

Raggiunto il numero massimo di tentativi di accesso al dispositivo virtuale

52 Error decrypting Errore nella decifra

53 The certificate has expired Il certificato associato alla chiave e' scaduto

54 There are no tokens for automatic signature with
Cosign HSM

Non sono disponibili token per la firma automatica con hsm Cosign

55 Error updating certificate in db Errore durante l'aggiornamento del certificato nel db

56 Wrong method use Errato utilizzo del metodo

57 Method not implemented yet Metodo non ancora implementato

58 Error assigning the OTP Errore durante l'assegnazione dell'OTP

59 Error assigning the static token Errore durante l'assegnazione del token statico

60 Error deleting the account Errore durante la cancellazione dell'account

61 Error activating the account Errore durante l'attivazione dell'account

62 Error loading the account Errore durante il caricamento dell'account

63 Error unlocking the account Errore durante lo sblocco dell'account

64 Unavailable hsm licenses Licenze per hsm esaurite

65 PIN too short PIN troppo corto

66 Session key incorrect Session key errata

67 Session key not specified Session key non specificata

68 Session key undefined Session key non definita

69 Session key expired Session key scaduta

70 Session key not usable Session key non utilizzabile

71 Error generating session key Errore durante la generazione della session key

72 Error incrementing the session counter Errore durante l'incremento del session counter

73 Error sending OTP code Errore durante l'invio del codice OTP

74 Error deleting session key Errore durante la cancellazione della session key

76 Error appositioning timestamp Errore durante l'apposizione della marca temporale

77 Error closing session Errore durante la chiusura della sessione

78 The number of documents to be signed differs from
the number of signature preferences

Il numero di documenti da firmare differisce dal numero di preferenze di firma

79 Error detecting Security World Errore durante il rilevamento del Security World

80 Error detecting the Module Errore durante il rilevamento del Modulo

81 Error reading the SoftCard Errore durante la lettura della SoftCard

82 Error writing the SoftCard Errore durante la scrittura della SoftCard

83 Error deleting the SoftCard Errore durante la cancellazione della SoftCard

84 Error loading SoftCard Errore durante il caricamento della SoftCard

85 SoftCard not loaded SoftCard non caricata

86 SoftCard already exists in the system SoftCard gia' esistente a sistema

87 SoftCard does not exist SoftCard inesistente

88 Error reading the key Errore durante la lettura della chiave

89 Error writing the key Errore durante la scrittura della chiave

90 Error deleting the key Errore durante la cancellazione della chiave

91 Error decrypting the RSA data Errore durante la decifratura RSA

92 Error decrypting the CMS envelope Errore durante la decifratura CMS

93 Error creating the SoftCard Errore durante la creazione della SoftCard

94 The size of the hash does not coincide with the
expected one by the algorithm

La dimensione dell'hash non coincide con quella prevista dall'algoritmo

95 Error loading Cosign Tokens Errore durante il caricamento dei Token Cosign

96 The system takes too much time, HSM overload. Try
again

Il sistema impiega troppo tempo, HSM sovraccarico. Riprovare

97 Timeout passed Timeout superato

98 No signature device associated to the user Nessun dispositivo di firma remota risulta associato all'utente in questione

1001 The OTP device does not exist Dispositivo OTP non esistente a sistema

1007 The OTP device was not activated Il dispositivo OTP non risulta essere stato attivato

1009 Unavailable attempts for the OTP device Superato il numero massimo di tentativi per il dispositivo OTP

1016 The OTP device was not associated to the holder Il dispositivo OTP non risulta essere stato associato al titolare

Method getErrors

This method return a list of errors which can be generated from SWS in in

Name Type Optional Description IN
/OUT

lang String String county code in 2 digit, accept only EN, IT. IN

errorCode Integer true Specify the error code you want to receive in the error description. If not specified will return return all errors in
a specified language.

IN

List<ErrorDeta
ils>

Return a list with the error(s) description. OUT

The type "ErrorDetails" is a composed by:

int errorCode
String errorLanguage (language code in 2 digit for example EN)
String errorLanguage2 (language code in 3 digit for example ENG)
String errorText (contain the error description in a specified language)

In this method, it is possible to return the list of all errors without setting the value of errorCode.

Verify the signatures/timestamp in SWS

SWS permits to verify the signature. For SWS the signature is VALID only if the signature has been apposed with qualified certificate.

For example the the certificate which has apposed the signature is qualified if:

Root CA enroll the certificate is in the truested list
private key is in secure device like smartcard, token or HSM

For example if the signature has been apposed with private key on file, the verify with SWS will fail because the private isn't in a secure device (like
HSM).

Method for verification of digital signatures: verifyWithPreferences

This method allow to verify different types of signatures (detached or no): Pades, Xades, Cades:

Name Type Mandatory Description IN/OUT

signedContent byte[] file to be verified IN

preferences VerifyPreferences Contain the preferences to be used during the verify process IN

SignedDocumentReportBean Composite class which contain the report of a signature OUT

Below will be described the complex object "VerifiyPreferences"

VerifyPreferences

Name Type Mandatory Default
value

Description Included from SWS
version

checkByteRange boolean

detachedContent byte[] Contain the original file if you are verifying a detached signature

includeFea false If set to true permits to verify the FEA (Firma Elettronica
Avanzata) signature

language String IT Contain the country code two digit and specify the language of
verification report.

mandatoryRevocationC
heck

boolean false

pdfEncryptionPassword String Contains the password of PDF files (if you are verifying PDF files
with password)

recursive boolean false Check if there are signatures in the file which has been signed

verifyOnDate Date Date of verification at specified date

namirial boolean false Permits to use custom tsl specified on properties. Used only for
test purpose.

withoutPlainDocument boolean false Permits to omit the plain document 2.5.54

In output will obtain the verification report described by complex object: SignedDocumentReportBean

SignedDocumentReportBean

Name Type Description Included from SWS
version

overallVerified boolean Very IMPORTANT: outcome of verification, if true the signature is VALID

checkDate Date Date of execute of verification

verificationDate Date Date of verification. For example if the verification date is: "2021-09-03 15:30:00" specificy i
want verify in that date.

plainDocument byte[] Original file (present only in Cades signatures)

noteReportList NoteReportBean List of notes to support the signature evaluation

signatureReport
List

SignatureReportB
ean

List of specific report on a single signature

nrOfSignatures int Number of signature in the file are you verifiyng

signatureFormat String Specify the type of signature. Can be: Pades, Cades or Xades

timestampRepor
tList

TimestampReport
Bean

Reports list in possible timestamps apposed to the signature

Below will be described the complex object NoteReportBean, SignatureReportBean:

NoteReportBean

Name Type Description Included from
SWS version

policy int Note validity area (0=ALL, 1=IT, 2=EU)

about int Object of the note (O=other, 1=Signature, 2=holder, 3=issuer, 4=timestamp)

type int Type of the note (1=INFO, 2=WARNING, 3=ERROR)

synopsis String Brief description of the note (for example: "Key on secure device")

descripti
on

String Detailed description of the note: "The private key associated with the test azienda certificate is stored in a secure
device compliant with European Regulation 2014/910/EU"

SignatureReportBean

Name Type Description Included from
SWS version

integrity boolean It defines the integrity of signature

signatureAlgor
ithmName

String Alghoritm used to sign

serialNumber BigInte
ger

Serial of the signing certificate

subjectDN String Subject DN of the signing certificate

subjectCN String Common Name (CN) in the subject DN associated to the signing certificate

issuerDN String Subject DN associated to the issuer of signing certificate

issuerDN String Common name (CN) of subject DN associated to the issuer of signing certificate

issuerCertificat
eStatus

enum Issuer's certificate status. It can have the following values: VALID, REVOKE, UNKNOWN

issuerInTruste
dList

boolean It defines if the issuer of the signing certificate is a trusted entity defined by the European TSL

keySize int size of key associated to the signer certificate

qcCompliance
Status

enum It defines if the signatures is in line with the Qualified Signature requirements. It can have the following values:
VALID, INVALID, UNDETERMINATED, VALID_WITH_WARNINGS, INFORMATION

qcSSCDStatus enum If defines if the signature was created by a secure device (like smartcard, token, hsm) NOT file (p12, jks)

signatureDate Date Date of signature

trustedSignatu
reDate

boolean Set to true if the signature include timestamp (to guarantee the date of signature)

derEncodedSi
gnerCert

byte[] Signer certificate in X509 format

signerCertifcat
eNotBefore

Date Start date of the validity of the signing certificate

signerCertifica
teNotAfter

Date End date of the validity of the signing certificate

signerCertifica
teStatus

enum Status of certificate. The value can be:

VALID
REVOKED
HOLD
UNKNOWN

id int number of signature

Method for verification of timestamps

The timestamp can be of two different types:

TSR (TimeStamp Response) + original file in the is called TSD (TimeStamp Data)same file
TSR and original file in two different files

There are two method for verify the TSD and TSR:

verifyTimeStampData
verifyTimeStampResponse

Method verifyTimeStampResponse and verifyTimestampData

Below the description of method "verifyTimeStampResponse" permits to verify only TSR:

Name Type Mandatory Description IN/OUT

tsr byte[] tsr to verify IN

content byte[] original file IN

TimestampReportBean Report with detail of verification OUT

And the method "verifyTimestampData" permits to verify only TSD:

Name Type Mandatory Description IN/OUT

tsd byte[] tsd to verify IN

List<TimestampReportBean> Report with detail of verification OUT

While the method "verifyTimeStampWithPreferences" permits to verify TSR and TSD, below the details:

Name Type Mandatory Description IN
/OUT

Included from
SWS version

timestampedC
onted

byte[] tsr or tsd to verify IN 2.5.55

preferences VerifyTimestampPrefere
nces

Contain the preferences about verify like language, original files (if
you are verifying a TSR file)

IN "

TimestampReportBean
Summary

Report with detail of verification OUT "

Below will be described the complex object :VerifyTimestampPreferences

VerifyTimestampPreferences

Name Type Default
value

Mandatory Description

detachedContent byte[] Contain the original file where has been applied the timestamp, use this field only if you are
verifying the TSR

responseWithoutCont
ent

boolean false Permits to remove the original files from the response (use this flag for reduce the bandwith
usage)

language String IT Specify the language report associated to verify

Below will be described the complex object TimestampReportBeanSummary:

TimestampReportBeanSummary

Name Type Description

timestampReportList List<TimestampReportBean> Detailed report of every timestamp in TSD file

noteReportList List<NoteReportBean> Other details about timestamp

overallVerified boolean Very IMPORTANT: outcome of verification, if true the all timestamps are VALID

Below will be described the complex object TimestampReportBean:

TimestampReportBean

Name Type Description Included from SWS
version

index Integer Return the number of timestamp verified

date Date When the timestamp has been apposed

signatureVerificationStat
us

enum The status of the integrity of the timestamp (indicates if the token's signature is intact), the
value can be:

VALID
INVALID

trustedListVerificationSta
tus

enum The status of the root certificates associated, the value can be:

VALID
INVALID
UNDETERMINATED

timestampCertificateStat
us

enum The status of certifcate which has apposed the timestamp, the value can be:

VALID
INVALID
UNDETERMINATED

issuer String Subject DN associated to the issuer certificate

subject String Subject DN associated to timestamp certificate

issuerCN String CN (Common Name) of Subject DN associated to the issuer certificate

subjectCN String CN (Common Name) of Subject DN associated to the timestamp certificate

serialNumber BigInteg
er

Serial number associated to timestamp certificate

signatureAlgorithm String Algorithm used for apply the timestamp

hashAlgorithm String Algorithm used for the hash generation for document hash

comment String Message explain the details of the error if present

timestampCertData byte[] Certificate associated to timestamp

content byte[] File oringinal which has been applied the timestamp

contentFilename String Return the filename if present else will return "originalFile.bin"

contentMimeType String Return the content type associated to the file if present. Else will return "application/octect-
stream"

timeStampToken byte[] Contain the timestamp associated

NOTE: the timestamp file is verified only if element of TimestampReportBean list this conditions (in AND) are verified:for every all

signatureVerificationStatus = VALID
trustedListVerificationStatus = VALID
timestampCertificateStatus = VALID

Method for verifyCertificate

Below the description of method "verifyCertificate":

Name Type Mandatory Description IN/OUT

certificate byte[] certificate to verify IN

CertificateReportBean Report with detail of verification OUT

Below will be described the complex object CertificateReportBean:

CertificateReportBean

Name Type Description Included from
SWS version

trusted boolean Set to TRUE mean the of the chain . The root of the chain is the self-signed root certificate is in trusted list
certificate (where issuerDN = subjectDN)

subjectValid boolean TRUE: if the certificate isn't expired

FALSE: the certificate is expired

subjectRevoked boolean TRUE: if the certificate is hold or revoked

FALSE: the certificate is active

subjectRevocati
onDate

Date date of revoke/hold

issuerValid boolean TRUE: if the of the certificate isn't expiredissuer

FALSE: the certificate is expired

issuerRevoked boolean TRUE: if the issuer certificate is hold or revoked

FALSE: the issuer certificate is active

issuerRevocatio
nDate

Date date of revoke/hold

LEGEND:

Below the details about certificate:

active the certificate isn't revoked or hold

valid isn't expired

Utilities for sign

Below will described described the method for extract the info about the files, for example extract extract the info about the fieldName in a PDF

getAvailableSignatureFieldNames

This method allow to retrieve for a given PDF file all signature fields present that there are already used.NOT

Below you can find a description of IN/OUT fields.

Name Type Mandatory Description IN/OUT

buffer byte[] The file to search for signature fields IN

encryptionPassword String The encryption password of the PDF in the file is encrypted IN

List<String> List of all signature field names available OUT

Example response

An example response can be found below:

Example response

[
 "SignatureField-1",
 "SignatureField-2"
]

allSignatureFieldNamesWithPreferences

This method allow to retrieve all signature field present inside a file. Using preferences the user is able to retrieve more details about the signature
applied to a given signature field.

Below you can find a description of IN/OUT fields.

Name Type Mandatory Description IN/OUT

buffer byte[] The file to search for signature fields IN

preferences SignatureFieldPreferences Preferences to be applied to the search operation IN

List<SignatureFieldName> List of all signature field names OUT

SignatureFieldPreferences

Here you can find a description of the complex object SignatureFieldPreferences

SignatureFieldPreferences

Name Type Description Included from SWS version

withDetails boolean Show details about the signature field signed, for example the appearence (height, widht, x, y),

signer name, sign date, the reason, location and the page

DEFAULT=false

2.5.56

withCertificate boolean Retrieve the signer certificate in base64 encoding and certificate subjectDN

DEFAULT=false

2.5.56

encryptionPassword String The encryption password used to protect the PDF given in input if present 2.5.56

SignatureFieldName

Here you can find a description of the complex object SignatureFieldName

SignatureFieldName

Name Type Description Included from SWS version

identifier String Signature field name identifier 2.5.56

signed boolean TRUE: the signature field is already signed

FALSE: the signature field is not signed

2.5.56

signatureDetails SignatureDetails Complex object containing details about the signature applied to a given field if signed 2.5.56

SignatureDetails

Here you can find a description of the complex object SignatureDetails

SignatureDetails

Name Type Description Included from SWS version

name String Signer name applied to a given signature field 2.5.56

signDate Timestamp Unix timestamp representing the date of when the signature has been applied 2.5.56

location String The location of where the signature has been applied 2.5.56

reason String Reason applied to a given signature 2.5.56

page Integer Page where the signature field is present (-1 if the page is not found) 2.5.56

appearance PdfRectangle Complex object containing info about the signature field box 2.5.56

certificate String Base64-encoding of the signer certificate 2.5.56

subjectDN String SubjectDN of the signer certificate 2.5.56

PdfRectangle

Here you can find a description of the complex object PdfRectangle

PdfRectangle

Name Type Description Included from SWS version

witdth Float Width of the signature field 2.5.56

height Float Heigth of the signature field 2.5.56

x Float Lower left X-Axis position of the signature field 2.5.56

y Float Lower left Y-Axis position of the signature field 2.5.56

Example response

Here you can find an example response:

[
 {
 "identifier": "SignatureField-1",
 "signed": false
 },
 {
 "identifier": "SignatureField-2",
 "signatureDetails": {
 "name": "My Name and Surname",
 "signDate": 1687869549000,
 "location": "Milan",
 "reason": "Signed for general purpose",
 "page": -1,
 "appearance": {
 "width": 40.50,
 "height": 10.20,
 "x": 1.0,
 "y": 2.3
 },
 "certificate": "<base64-encoded certificate>",
 "subjectDN": "CN=My Name and Surname, SERIALNUMBER=1234567890, GIVENNAME=MyName, SURNAME=My
Surname, C=IT"
 },
 "signed": true
 }
]

	SWS Integration Guide

