
API Documentation

Introduction
On this page you will find the description. First we start with a basic overview of the API. If you are looking for examples we recommend the eSAW API Pos

, and our .tman Sample Envelope structure Stories and Examples

Introduction
Principles of Api v6
Overview and references
Resources
General conncepts

Object validation
Authorization
Authorization

Format Specification
Callbacks

Callback Types
Envelope Callback
Envelope Status Callback
Workstep Event Callbacks

Available Event Types
Draft Callbacks

Principles of Api v6
Detailed information about all changes between api v5 and api v6 can be found here: .migration guide

Reduced HTTP verbs
Only HTTP GET and POST

Consistent naming and symmetric structures within api v6
Consistency between Web User Interface (WebUI) and api v6 in features but also naming

Positive wording (e.g. prevent sharing with team changed to share with team)
Simplified terminology and structures
No abstract types any more

Changes has been made on api method level as well as the JSON structures and the envelope status values changed.

Overview and references
The API is for developers, who want to integrate eSignAnyWhere into their application and for administrators, who want to script interactions with
eSignAnyWhere (e.g. user synchronization).

Quick Overview: eSAW uses REST (with JSON) as API. The basic workflow is to upload a document and then send the envelope with a envelope
configuration. Optional, before sending the envelope, it is possible to prepare the envelope to get the workstep configuration for sending the envelope. For
more information about the envelope configuration please also have a look at the Envelope Structure. The configuration consists out of the envelope part
(workflow configuration) and for each action a definition and a signing configuration (workstep configuration). The workstep configuration is the description
(as JSON for REST) of tasks for signer (e.g. Signature Fields, Form-Fields) and additional document configurations.

The easiest way to start is enabling the for a user. As developer (and power user) you can send envelopes via eSignAnywhere in the UI DeveloperMode
and download the complete envelope configuration (including the workstep configurations). So eSAW can be a seen as configuration designer, where you
can easily prepare the envelope configuration. After you downloaded the configuration you just have to replace the recipient information and configuration.

Resources

Attention

Please note that this documentation and the links refer to the api v6. For more information please see the and the migration guide documentatio
.n related to v5

REST API /v3 and /v4 DEPRECATION: The 23.76 (published March 2024) will be the last LTS version that includes these API versions. By
early June 2024, the REST API routes to v3/v4 will be deactivated on DEMO. Early December 2024, the REST API routes to v3/v4 will be
removed from feature stream releases. Note that there is no date communicated yet to discontinue REST APIv5 (and where v5 refers to v4
routes, these will still remain); however we recommend to use the /v6 API specification already.

https://confluence.namirial.com/display/eSign/REST+tutorial+using+Postman
https://confluence.namirial.com/display/eSign/REST+tutorial+using+Postman
https://confluence.namirial.com/display/eSign/Envelope+structure
https://confluence.namirial.com/display/eSign/eSignAnyWhere+Integration+Stories
https://confluence.namirial.com/display/eSign/Migrate+REST+API+clients+from+v5+to+v6
https://confluence.namirial.com/display/eSign/Developer+Mode
https://confluence.namirial.com/display/eSign/Migrate+REST+API+clients+from+v5+to+v6
https://confluence.namirial.com/display/eSign/v5+API+Documentation
https://confluence.namirial.com/display/eSign/v5+API+Documentation

REST API Reference
(Swagger) | >= 3.1 |

https://demo.esignanywhere.net/Api

REST tutorials This turorials help getting familiar with the API technology and the most common tools to do first tests of API calls
already before implementing your own integration code.
visit REST tutorial using Postman

Tutorial: Hello World* This tutorial allows to dig into the API integration of eSignAnyWhere a bit deeper. It focuses on audience already
familiar with tools to run API calls, such as Postman or SoapUI.

visit Hello World Tutorial

Developer mode* visit developer mode

Sample Code in Java Here you can find the java sample: . (Contains example with REST, developed with JavaSE-12)Download

SignAnyWhere Viewer 2019

Redesign

visit SignAnyWhere Viewer 2019 Information

SignAnyWhere Viewer
Extended Customization

visit SignAnyWhere Viewer Extended Customization

Integration & Use Cases visit Integration & Use Cases

Developer FAQ visit Developer FAQ

eSAW Error Codes visit eSAW Error Codes

* Recommended

The , and (for on-premise customers) can be also helpful.User Guide Signer Guide Administration Guide

General conncepts

Object validation

String and array objects are validated. If hovering over an object in the section on e.g. you model https://demo.esignanywhere.net/Api/swagger/ui/index
can see which validation is performed. In the following sample the validation for the array is such that at least one document must be added Documents
and maximum of 50 documents are allowed.

For string objects, the length is validated. In the following sample, a maximum of 100 characters is checked for the string Name.

https://demo.esignanywhere.net/Api
https://confluence.namirial.com/display/eSign/REST+tutorial+using+Postman
https://confluence.namirial.com/display/eSign/Tutorial%3A+Hello+World
https://confluence.namirial.com/display/eSign/Developer+Mode
https://confluence.namirial.com/download/attachments/70058038/Java-eSAW-Tutorial-REST-API.zip?version=1&modificationDate=1624883280168&api=v2
https://confluence.namirial.com/display/eSign/eSignAnyWhere+Release+News#eSignAnyWhereReleaseNews-eSignAnyWhere3.5
https://confluence.namirial.com/display/eSign/SignAnyWhere+Viewer+-+2019
https://confluence.namirial.com/display/eSign/SignAnyWhere+Viewer+-+Customization
https://confluence.namirial.com/display/eSign/Integration+Scenarios
https://confluence.namirial.com/display/eSign/Developer+FAQ
https://confluence.namirial.com/display/eSign/Error+Codes
https://confluence.namirial.com/display/eSign/User+Guide
https://confluence.namirial.com/display/eSign/Signer+Guide
https://confluence.namirial.com/display/eSign/Administration+Guide
https://demo.esignanywhere.net/Api/swagger/ui/index

Ids have a fixed length, therefore the minimum and maximum values are the same:

Authorization

This section covers the authorization options for REST-API integrations. For the authorization you have different options with REST API; as described in
the next chapters. If you are authorized you will get a HTTP/200 Ok info. Otherwise you will get a 401 Unauthorized error.

Authorization

We recommend to use user-specific API tokens. Therefore, each user can create several tokens for different application integrations. The apiToken has to

be provided as HTTP Header.

Please see the next sample authorization (Bearer token):

Key Value

"Authorization" e.g. "Bearer asdfngtmvv8pfmsuaxpzz85zux3e63dd9zttrwitx9mln6qka6tds83du3p3lroe"

Please see the next sample authorization (api token):

Key Value

"ApiToken" "asdfngtmvv8pfmsuaxpzz85zux3e63dd9zttrwitx9mln6qka6tds83du3p3lroe"

Such an user api token can be created in SettingsAPI Tokens and Apps; Section "API Tokens".

Tokens created by eSAW are currently 64-digit alphanumeric strings - but the length and set of allowed characters may be changed with future product
versions.

Format Specification

 Note that the key can be any 64 digit alphanumeric value; not necessarily following the GUID format! The length and set of allowed characters may be
changed with future product versions.

Callbacks
The API allows the definition of several callbacks. , that only the envelope callback (directly from eSignAnyWhere) is fired, when the envelope Please note
is in a final state. The is fired by a sub-component and you may require to wait a post-processing time that the envelope reaches its status update callback
final state.

https://confluence.namirial.com/display/eSign/eSignAnyWhere+Release+News#eSignAnyWhereReleaseNews-eSignAnyWhere20.42

Time of
Retry

Total
time
after t0

0 min T0: Initial Callback Event
will retry (see next row) if no HTTP 2xx response, or in case of timeout

T1 = T0 +
5 min

5 min 2nd Attempt (= 1st Retry)
will retry (see next row) if no HTTP 2xx response, or in case of timeout

T2 = T1 +
10 min

15 min 3rd Attempt

T3 = T2 +
15 min

30 min ...

T4 = T3 +
20 min

50 min ...

...

T9 = T8 +
40 min

180 min
= 3h

10th Attempt
if still no HTTP 2xx response => listed as "warning" in errors view (assuming default value "10" configured in _global.xml for
"notificationErrorThreshold")

...

T29 =
T28 + 145
min

2175 min
= 36.25h

30th Attempt
if still no HTTP 2xx response => listed as "error" in errors view & permanent give-up (assuming default value "30" configured
in _global.xml for "notificationMaximumRetries"); but can be triggered from UI / errors view) again

Callback Types

CallbackConfiguration
Draft Callbacks

Envelope Callback

This is the basic callback (“CallbackUrl”: “”), which is fired if the envelope reaches a final state (completed, rejected). If you integrate eSAW, please have a
look at the (directly below documented), because it might deliver more details about the envelope and might so be more useful Envelope Status Callback
for integrating.

Placehoder

##EnvelopeId##
##Action##

envelopeFinished : when an envelope was finished (completed or rejected)

Sample:

https://www.mycallback.at?envelope=##EnvelopeId##

Envelope Status Callback

Envelopes status callbacks (“StatusUpdateCallbackUrl”: “”,) are fired, based on envelope events/actions. There are also detailed callbacks available based
on events.

Consider, that our system expects the full callback url, including the parameter list you expect, with the placeholders that should be replaced by values at
runtime. You can also add your own parameter for that envelope (e.g. internal references). Moreover, on our shared SaaS environments only HTTPS
callbacks (port 443, and 1025-65535) are allowed.

Placehoder for callback URL:

##EnvelopeId##
##Action##

workstepFinished : when the workstep was finished
workstepRejected : when the workstep was rejected
workstepDelegated : whe the workstep was delegated
workstepOpened : when the workstep was opened
sendSignNotification : when the sign notification was sent
envelopeExpired : when the envelope was expired
workstepDelegatedSenderActionRequired : when an action from the sender is required because of the delegation

Consider, that our system expects the full callback url, including the parameter list you expect, with the placeholders that should be replaced by values at
runtime. You can also add your own parameter for that envelope (e.g. internal references). Moreover, on our shared SaaS environments only HTTPS
callbacks (port 443, and 1025-65535) are allowed.

Sample:

https://www.mycallback.at?envelope=##EnvelopeId##&action=##Action##

Sample with custom parameter “ “:internalid

https://www.mycallback.at?envelope=##EnvelopeId##&action=##Action##&internalid=1234

Workstep Event Callbacks

The workstep event callbacks are specific event callbacks fired on events caused by the underlying "SIGNificant Server Platform" component, but also
routed through the notification system of eSignAnyWhere. Those callbacks inform in a way more detailled way about the workstep events - but note that
those events are not necessarily time-synced to the envelope events. To trigger activities on the eSignAnyWhere API, always consider the envelope or
envelope status callbacks.

Detailed callbacks on specific events

Note: You can configure a proxy for all callbacks. Please see the next sample:

<callbackProxySettings>
 <!-- Enable or disable the use of proxy for all callbacks. Values 1 (enabled) or 0 (disabled)-->
 <enabled>0</enabled>
 <!-- Address of the proxy server-->
 <address></address>
 <!-- Send all callbacks to local addresses without using proxy. Values 1 (bypass for local) or 0 (always
use proxy)-->
 <!-- Local requests are identified by the lack of a period (.) in the URI, as in http://webserver/, or
access the local server, including http://localhost, http://loopback, or http://127.0.0.1-->
 <bypassProxyOnLocal>0</bypassProxyOnLocal>
 <networkCredentials>
 <!-- Domain for Credentials-->
 <domain></domain>
 <!-- Username for Credentials-->
 <username></username>
 <!-- Password for Credentials. If password is not encrypted then remove the attribute enc-->
 <password enc="sec2"></password>
 </networkCredentials>
 </callbackProxySettings>

The following placeholders are defined:

##WorkstepId## – workstep of current action
##EventType## – type of event (see list of types below)
##Source## – internal (eSAW) or external (Viewer)
##Time## – time when the action occurred
##Description## – textual description of the event
##RecipientEmail## – emailadress of current recipient
##EnvelopeId## – current envelope id
##RecipientOrder## – index of current recipient

Please also see the available event types which can be added in the section " ". If one or more event types are enabled in the CallbackConfiguration
configuration the result is equivalent to the api v5 configuration for whitelist.

Please see the following sample configuration:

http://www.mycallback.at?envelope=##EnvelopeId##&action=##Action##&internalid=1234

 "CallbackConfiguration": {
 "CallbackUrl": "string",
 "StatusUpdateCallbackUrl": "string",
 "ActivityActionCallbackConfiguration": {
 "Url": "string",
 "ActionCallbackSelection": {
 "ConfirmTransactionCode": true,
 "DefaultEventType": true,
 "AgreementAccepted": true,
 "AgreementRejected": true,
 "RequestPrepareAuthenticationInformationSuccess": true,
 "PrepareAuthenticationSuccess": true,
 "AuthenticationFailed": true,
 "AuthenticationRejected": true,
 "AuthenticationSuccess": true,
 "ReAuthenticationFailed": true,
 "AuditTrailRequested": true,
 "AuditTrailXmlRequested": true,
 "CalledPage": true,
 "WhoIsInformation": true,
 "DocumentDownloaded": true,
 "FlattenedDocumentDownloaded": true,
 "AddedAnnotation": true,
 "AddedAttachment": true,
 "AppendedDocument": true,
 "FormsFilled": true,
 "ConfirmReading": true,
 "PageViewChanged": true,
 "SendTransactionCode": true,
 "PrepareSignWorkstepDocument": true,
 "SignWorkstepDocument": true,
 "UndoAction": true,
 "WorkstepCreated": true,
 "WorkstepFinished": true,
 "WorkstepRejected": true,
 "DisablePolicyAndValidityChecks": true,
 "EnablePolicyAndValidityChecks": true,
 "AppendFileToWorkstep": true,
 "AppendTasksToWorkstep": true,
 "SetOptionalDocumentState": true,
 "PreparePayloadForBatch": true
 }
 }
 },

Please note that if all event types are disabled the URL which was configured in the configuration will not get any callbacks.

These events are fired by the Workstep Controller (internal component) and are fired before the data in eSAW is complete updated (some post-processing
is required). Therefore this event callbacks are used only in rare integrations. For more information please see https://demo.esignanywhere.net/Api

 section /swagger/ui/index#!/Envelope/Envelope_Send EnvelopeSendActionCallbackSelection

Available Event Types

Type Description

ConfirmTransactionCod
e

A transaction code was sent

AgreementAccepted The user accepted the agreement

AgreementRejected The user rejected the agreement

PrepareAuthenticationS
uccess

The prepare authentication process succeeded

AuthenticationFailed The user failed to authenticate

AuthenticationSuccess The user succeeded to authenticate

https://demo.esignanywhere.net/Api/swagger/ui/index#!/Envelope/Envelope_Send
https://demo.esignanywhere.net/Api/swagger/ui/index#!/Envelope/Envelope_Send

AuditTrailRequested The audittrail was requested

AuditTrailXmlRequested The audittrail XML was requested

CalledPage The viewer site was requested

DocumentDownloaded The document download was requested

FlattenedDocumentDo
wnloaded

The flattened document download was requested

AddedAnnotation An annotation was added

AddedAttachment An attachment was added

AppendedDocument A document was appended

FormsFilled A form field was filled

ConfirmReading A reading task was completed

PageViewChanged Note: This event is only used for the audit trail, no notification is sent to the configured URL. The user changed the page view
(e.g. by scrolling through the document).

SendTransactionCode This event is raised, when a TransactionCode for a signature with type TransactionCode has been sent using the
IdentityServer or the TransactionCodeSenderPlugin

PrepareSignWorkstepD
ocument

A signature is prepared for signing

SignWorkstepDocument Try to sign a signature

UndoAction An action was undone

WorkstepCreated A workstep was created

WorkstepFinished A workstep was finished

WorkstepRejected A workstep was rejected

DisablePolicyAndValidit
yChecks

The policy and validity checks have been disabled.

EnablePolicyAndValidit
yChecks

The policy and validity checks have been enabled.

AppendFileToWorkstep A file was appended to the workstep

AppendTasksToWorkst
ep

A task was added to the workstep

SetOptionalDocumentS
tate

A optional document became either active or inactive

PreparePayloadForBat
ch

The payload is getting prepared for batch signing

Draft Callbacks

Draft callbacks are fired, if a draft is used or deleted. The draft callback is set in the “CreateDraftOptions” (“AfterSendCallbackUrl”: “”), via the following call:
https://demo.esignanywhere.net/Api/swagger/Draft/Draft_Create

##DraftId##
#Action##

draftDiscarded
draftSent

Sample:

https://www.mycallback.at?draft=##DraftId##

https://demo.esignanywhere.net/Api/swagger/ui/index#!/Draft/Draft_Create

	API Documentation

