
v5 Api Reference - Introduction REST
On this page you will find the description. First we start with a basic overview of the API. Before you use the Api Reference, we eSAW API
recommend you to read the , to get an overview about our programming interface, data types and basic concepts. If you are looking API Documenation
for examples we recommend the , and our .Postman Sample REST Guide Stories and Examples

Authorization
UserKey Header Authorization
Bearer token Authorization
OrganizationKey and UserLogin Header

Creating an organization Key
Format Specification

Callbacks
Callback Types

Envelope Callback
Envelope Status Callback
Workstep Event Callbacks

Blacklist-Definition
Whitelist-Definition
Available Event Types

Draft Callbacks
Error

Authorization
This section covers the authorization options for REST-API integrations. For the authorization you have different options with REST API; as described
in the next chapters. If you are authorized you will get a HTTP/200 Ok info. Otherwise you will get a 401 Unauthorized error.

UserKey Header Authorization

We recommend to use user-specific API tokens. Therefore, each user can create several tokens for different application integrations. The apiToken

has to be provided as HTTP Header.

Header Description Example Value

apiToken The user specific API token e.g. "asdfngtmvv8pfmsuaxpzz85zux3e63dd9zttrwitx9mln6qka6tds83du3p3lroe"

Such an organization key can be created in SettingsAPI Tokens and Apps; Section "API Tokens".

Tokens created by eSAW are currently 66-digit alphanumeric strings - but the length and set of allowed characters may be changed with future
product versions.

The User Key can also be retrieved, for integration scenarios, by implementing an OAuth Authorization Code Flow.

Bearer token Authorization

Currently avaiable for just some API methods (e.g. sspfile/uploadtemporary).
The same key as used for the userKey header authorization can be used as bearer token.

OrganizationKey and UserLogin Header

Authentication can be done also using the userlogin name and an organization-wide organization key in the HTTP headers. We recommend to uavoid
sing organization key authorization in scenarios where the organization key has to be shared with users, as it may be misused to gain access to other
sender's envelopes.

Creating an organization Key

To create organization keys in new organizations where the organization was created with software version 21.16 or newer, it is required to
enable the Feature Flag " ". On a SaaS environment, Namirial staff will enable that feature per organization on OrganizationApiToken
request. The request needs to come from a user who is granted the Administrator permission in that organization.

https://confluence.namirial.com/display/eSign/v5+API+Documentation
https://confluence.namirial.com/display/eSign/v5+REST+tutorial+using+Postman
https://confluence.namirial.com/display/eSign/v5+Beginner+Guide+REST
https://confluence.namirial.com/display/eSign/v5+eSignAnyWhere+Integration+Stories
https://confluence.namirial.com/display/eSign/eSignAnyWhere+Release+News#eSignAnyWhereReleaseNews-eSignAnyWhere20.42

Such an organization key can be created in SettingsAPI Tokens and Apps; Section "Organization API Tokens". Note that the option to create an
organization key will be invisible, if the instance was set up with a newer product version and the feature flag was not enabled.

You will be asked to name the API token. The name of the API token has no functional behavior, it just helps to manage different tokens. We
recommend to create independent tokens for different API integrations. This will allow you to invalidate a token easily in case one external application
did e.g. publish the token by mistake.

Once completed, the token will be listed, together with other created tokens:

The list view allows you to (temporarily) disable a token with the slider, open a details view, or delete a token permanently.

To read the token value, open the Details view:

With the copy-button next to the "Organization Token" field, the token can be copied to the Windows Clipboard and inserted in your business
application or integration configuration.

Be careful, handle the token like an organization wide password! Keep in mind that the token allows wide access to your organization's configuration
and documents.

Format Specification

 Note that the key can be any 32digit alphanum value; not necessarily following the GUID format! The length and set of allowed characters may be
changed with future product versions.

Header Description Example Value

Organizati
onKey

The organization wide token e.g. "1234abcd-1a2b-fedc-01a3-9876ba12cdef" or
"abxdz1m8a805lhq4awnfkx8jsbrlqsup"

UserLogin
Name

The user name (=email address) of the user who has access to the
data (e.g.: sender of an envelope)

john.doe@example.com

Callbacks
The API allows the definition of several callbacks. , that only the envelope callback (directly from eSignAnyWhere) is fired, when the Please note
envelope is in a final state. The is fired by a sub-component and you may require to wait a post-processing time that the status update callback
envelope reaches its final state.

In general: eSignAnyWhere is calling the Callback URL 30 times. With the timeout this should be enough to recover if the called system is down for a
few minutes.

1st callback sent
2nd callback after 5min (only previous fails of course, e.g. does not get a "200" back)
3rd callback after 10min after the previous one (so 15min after the 1st)
4th callback after 15min after the previous one (so 30min after the 1st)
....
xth callback after 30min after the previous one

Callback Types

Envelope Callback
Envelope Status Callback
Workstep Event Callback
Draft Callbacks

Envelope Callback

This is the basic callback (“CallbackUrl”: “”), which is fired if the envelope reaches a final state (completed, rejected). If you integrate eSAW, please
have a look at the (directly below documented), because it might deliver more details about the envelope and might so be Envelope Status Callback
more useful for integrating.

Placehoder

##EnvelopeId##
##Action##

envelopeFinished : when an envelope was finished (completed or rejected)

Sample:

https://www.mycallback.at?envelope=##EnvelopeId##

Envelope Status Callback

Envelopes status callbacks (“StatusUpdateCallbackUrl”: “”,) are fired, based on envelope events/actions. There are also detailed callbacks available
based on events.

Consider, that our system expects the full callback url, including the parameter list you expect, with the placeholders that should be replaced by values
at runtime. You can also add your own paramter for that envelope (e.g. internal references). Moreover, on our shared SaaS environments only HTTPS
(port 443) callbacks are allowed.

Placeholder for callback URL:

##EnvelopeId##
##Action##

workstepFinished : when the workstep was finished
workstepRejected : when the workstep was rejected
workstepDelegated : whe the workstep was delegated
workstepOpened : when the workstep was opened
sendSignNotification : when the sign notification was sent
envelopeExpired : when the envelope was expired
workstepDelegatedSenderActionRequired : when an action from the sender is required because of the delegation

Consider, that our system expects the full callback url, including the parameter list you expect, with the placeholders that should be replaced by values
at runtime. You can also add your own paramter for that envelope (e.g. internal references). Moreover, on our shared SaaS environments only HTTPS
(port 443) callbacks are allowed.

Sample:

https://www.mycallback.at?envelope=##EnvelopeId##&action=##Action##

Sample with custom parameter “ “:internalid

https://www.mycallback.at?envelope=##EnvelopeId##&action=##Action##&internalid=1234

Workstep Event Callbacks

The workstep event callbacks are specific event callbacks fired on events caused by the underlying "SIGNificant Server Platform" component, but also
routed through the notification system of eSignAnyWhere. Those callbacks inform in a way more detailled way about the workstep events - but note
that those events are not necessarily time-synced to the envelope events. To trigger activities on the eSignAnyWhere API, always consider the
envelope or envelope status callbacks.

http://www.mycallback.at?envelope=##EnvelopeId##&action=##Action##&internalid=1234

You can forward all eventtyps to your callback url or use the follwing:

blacklist: all events, except the events in the blacklist, are fired
whitelist: only the events in the whitelist are fired
empty blacklist/whitelist: all events are fired

Do not use blacklist and whitelist at the same time! If you only want to use the event callbacks, use an empty envelope callback in the configuration (<c
) allbackUrl />

The following placeholders are defined:

##WorkstepId## – workstep of current action
##EventType## – type of event (see list of types below)
##Source## – internal (eSAW) or external (Viewer)
##Time## – time when the action occurred
##Description## – textual description of the event
##RecipientEmail## – emailadress of current recipient
##EnvelopeId## – current envelope id
##RecipientOrder## – index of current recipient

Please also see the available event types for the blacklist and whitelist definitions below.

Definition without black-/whitelist:

"WorkstepEventCallback": {
 "Url": "http://www.mycallback.at?
envelopeId=##EnvelopeId##&recipientEmail=##RecipientEmail##&recipientOrder=##RecipientOrder##"
 },

Detailed callbacks on specific events

Note: You can configure a proxy for all callbacks. Please see the next sample:

<callbackProxySettings>
 <!-- Enable or disable the use of proxy for all callbacks. Values 1 (enabled) or 0 (disabled)--
>
 <enabled>0</enabled>
 <!-- Address of the proxy server-->
 <address></address>
 <!-- Send all callbacks to local addresses without using proxy. Values 1 (bypass for local) or
0 (always use proxy)-->
 <!-- Local requests are identified by the lack of a period (.) in the URI, as in
http://webserver/, or access the local server, including http://localhost, http://loopback, or
http://127.0.0.1-->
 <bypassProxyOnLocal>0</bypassProxyOnLocal>
 <networkCredentials>
 <!-- Domain for Credentials-->
 <domain></domain>
 <!-- Username for Credentials-->
 <username></username>
 <!-- Password for Credentials. If password is not encrypted then remove the attribute enc-->
 <password enc="sec2"></password>
 </networkCredentials>
 </callbackProxySettings>

<envelope>
 ...
 <workstepEventCallback>
 <url>http://www.mycallback.at?
envelopeId=##EnvelopeId##&recipientEmail=##RecipientEmail##&recipientOrder=##RecipientOrder##</url>
 </workstepEventCallback>
 <steps>
 ...
 </steps>
</envelope>

Blacklist-Definition

"StatusUpdateCallbackUrl": "string",
 "WorkstepEventCallback": {
 "Url": "http://www.mycallback.at?
envelopeId=##EnvelopeId##&recipientEmail=##RecipientEmail##&recipientOrder=##RecipientOrder##",
 "Blacklist": [
 "string"
]
 },

<workstepEventCallback>
 <url>http://www.mycallback.at?
envelopeId=##EnvelopeId##&recipientEmail=##RecipientEmail##&recipientOrder=##RecipientOrder##</url>
 <blacklist>
 <event>SomeEventName</event>
 <event>SomeDifferentEventName</event>
 </blacklist>
</workstepEventCallback>

Whitelist-Definition

"StatusUpdateCallbackUrl": "string",
 "WorkstepEventCallback": {
 "Url": "http://www.mycallback.at?
envelopeId=##EnvelopeId##&recipientEmail=##RecipientEmail##&recipientOrder=##RecipientOrder##",
 "WhiteList": [
 "string"
]
 },

<workstepEventCallback>
 <url>http://www.mycallback.at?
envelopeId=##EnvelopeId##&recipientEmail=##RecipientEmail##&recipientOrder=##RecipientOrder##</url>
 <whitelist>
 <event>SomeEventName</event>
 <event>SomeDifferentEventName</event>
 </whitelist>
</workstepEventCallback>

Please also see the following complete configuration:

{

 "SspFileIds": [
 "##FileId##"
],
 "SendEnvelopeDescription": {

 "Name": "test",
 "EmailSubject": "Please sign the enclosed envelope",
 "EmailBody": "Dear #RecipientFirstName# #RecipientLastName#\n\n#PersonalMessage#\n\nPlease sign the
envelope #EnvelopeName#\n\nEnvelope will expire at #ExpirationDate#",
 "DisplayedEmailSender": "",
 "EnableReminders": true,
 "FirstReminderDayAmount": 5,
 "RecurrentReminderDayAmount": 3,
 "BeforeExpirationDayAmount": 3,
 "DaysUntilExpire": 28,
 "CallbackUrl": "",
 "StatusUpdateCallbackUrl": "",
 "WorkstepEventCallback": {
 "Url": "http://www.mycallback.at?
envelopeId=##EnvelopeId##&recipientEmail=##RecipientEmail##&recipientOrder=##RecipientOrder##",
 "WhiteList": [
 "string"
]
 },
 "Steps": [
 {
 "OrderIndex": 1,
 "Recipients": [
 {
 "Email": "##EMAIL##",
 "FirstName": "##NAME##",
 "LastName": "##NAME##",
 "LanguageCode": "en",
 "EmailBodyExtra": "",
 "DisableEmail": false,
 "AddAndroidAppLink": false,
 "AddIosAppLink": false,
 "AddWindowsAppLink": false,
 "AllowDelegation": false,
 "AllowAccessFinishedWorkstep": false,
 "SkipExternalDataValidation": false,
 "AuthenticationMethods": [
 {
 "Method": "Pin",
 "Parameter": "1234"
 }
]
 }
],
 "EmailBodyExtra": "",
 "RecipientType": "Signer",
 "WorkstepConfiguration": {
 "WorkstepLabel": "test",
 "SmallTextZoomFactorPercent": 100,
 "FinishAction": {
 "ServerActions": [],
 "ClientActions": []
 },
 "ReceiverInformation": {
 "UserInformation": {
 "FirstName": "##NAME##",
 "LastName": "##NAME##",
 "EMail": "##EMAIL##"
 },
 "TransactionCodePushPluginData": []
 },
 "SenderInformation": {
 "UserInformation": {
 "FirstName": "##NAME##",
 "LastName": "##NAME##",
 "EMail": "##EMAIL##"
 }
 },
 "TransactionCodeConfigurations": [
 {

 "Id": "smsAuthTransactionCodeId",
 "HashAlgorithmIdentifier": "Sha256",
 "Texts": [

]
 }
],
 "SignatureConfigurations": [],
 "ViewerPreferences": {
 "FinishWorkstepOnOpen": false,
 "VisibleAreaOptions": {
 "AllowedDomain": "*",
 "Enabled": false
 }
 },
 "ResourceUris": {
 "SignatureImagesUri": "string"
 },
 "AuditingToolsConfiguration": {
 "WriteAuditTrail": false,
 "NotificationConfiguration": {}
 },
 "Policy": {
 "GeneralPolicies": {
 "AllowSaveDocument": true,
 "AllowSaveAuditTrail": true,
 "AllowRotatingPages": false,
 "AllowEmailDocument": true,
 "AllowPrintDocument": true,
 "AllowFinishWorkstep": true,
 "AllowRejectWorkstep": true,
 "AllowRejectWorkstepDelegation": false,
 "AllowUndoLastAction": false,
 "AllowAdhocPdfAttachments": false,
 "AllowAdhocSignatures": false,
 "AllowAdhocStampings": false,
 "AllowAdhocFreeHandAnnotations": false,
 "AllowAdhocTypewriterAnnotations": false,
 "AllowAdhocPictureAnnotations": false,
 "AllowAdhocPdfPageAppending": false
 },
 "WorkstepTasks": {
 "PictureAnnotationMinResolution": 0,
 "PictureAnnotationMaxResolution": 0,
 "PictureAnnotationColorDepth": "Color16M",
 "SequenceMode": "NoSequenceEnforced",
 "PositionUnits": "PdfUnits",
 "ReferenceCorner": "Lower_Left",
 "Tasks": [
 {
 "Texts": [
 {
 "Language": "*",
 "Value": "Signature Disclosure Text"
 },
 {
 "Language": "en",
 "Value": "Signature Disclosure Text"
 }
],
 "Headings": [
 {
 "Language": "*",
 "Value": "Signature Disclosure Subject"
 },
 {
 "Language": "en",
 "Value": "Signature Disclosure Subject"
 }
],
 "IsRequired": false,

 "Id": "ra",
 "DisplayName": "ra",
 "DocRefNumber": 1,
 "DiscriminatorType": "Agreements"
 },
 {
 "PositionPage": 1,
 "Position": {
 "PositionX": 63.0,
 "PositionY": 603.0
 },
 "Size": {
 "Height": 80.0,
 "Width": 190.0
 },
 "AdditionalParameters": [
 {
 "Key": "enabled",
 "Value": "1"
 },
 {
 "Key": "positioning",
 "Value": "onPage"
 },
 {
 "Key": "req",
 "Value": "1"
 },
 {
 "Key": "fd",
 "Value": ""
 },
 {
 "Key": "fd_dateformat",
 "Value": "dd-MM-yyyy HH:mm:ss"
 },
 {
 "Key": "fd_timezone",
 "Value": "datetimeutc"
 },
 {
 "Key": "spcId",
 "Value": "tLevelId"
 }
],
 "AllowedSignatureTypes": [
 {
 "AllowedCapturingMethod": "Click2Sign",
 "Id": "679dd763-6e25-4a68-929d-cb1ce13dac7e",
 "DiscriminatorType": "SigTypeClick2Sign",
 "Preferred": false,
 "StampImprintConfiguration": {
 "DisplayExtraInformation": true,
 "DisplayEmail": true,
 "DisplayIp": true,
 "DisplayName": true,
 "DisplaySignatureDate": true,
 "FontFamily": "Times New Roman",
 "FontSize": 11.0
 }
 }
],
 "UseTimestamp": false,
 "IsRequired": true,
 "Id": "1#XyzmoDuplicateIdSeperator#Signature_a1e940eb-bcd5-2222-9777-f3570faedf3f",
 "DisplayName": "",
 "DocRefNumber": 1,
 "DiscriminatorType": "Signature"
 }
]
 }

 },
 "Navigation": {
 "HyperLinks": [],
 "Links": [],
 "LinkTargets": []
 }
 },
 "DocumentOptions": [
 {
 "DocumentReference": "1",
 "IsHidden": false
 }
],
 "UseDefaultAgreements": true
 },
 {
 "OrderIndex": 2,
 "Recipients": [
 {
 "Email": "##EMAIL##",
 "FirstName": "##NAME##",
 "LastName": "##NAME##",
 "LanguageCode": "en",
 "EmailBodyExtra": "",
 "DisableEmail": false,
 "AddAndroidAppLink": false,
 "AddIosAppLink": false,
 "AddWindowsAppLink": false,
 "AllowDelegation": false,
 "SkipExternalDataValidation": false,
 "AuthenticationMethods": []
 }
],
 "EmailBodyExtra": "",
 "RecipientType": "Cc",
 "DocumentOptions": [],
 "UseDefaultAgreements": false
 }
],
 "AddFormFields": {
 "Forms": {}
 },
 "OverrideFormFieldValues": {
 "Forms": {}
 },
 "AttachSignedDocumentsToEnvelopeLog": false
}
}

These events are fired by the Workstep Controller (internal component) and are fired before the data in eSAW is complete updated (some
postprocessing is required). Therefore this event callbacks are used only in rare integrations.

Available Event Types

ConfirmTransactionCode – A transaction code was sent
DefaultEventType – Not specially defined event type
AgreementAccepted – The user accepted the agreement
AgreementRejected – The user rejected the agreement
RequestPrepareAuthenticationInformationSuccess – The request for additional authentication infos was requested
PrepareAuthenticationSuccess – The prepare authentication process succeeded
AuthenticationFailed – The user failed to authenticate
AuthenticationRejected – The user rejected the authentication process
AuthenticationSuccess – The user succeeded to authenticate
ReAuthenticationFailed – The reauthentication process failed
AuditTrailRequested – The audittrail was requested
AuditTrailXmlRequested – The audittrail XML was requested
CalledPage – The viewer site was requested
WhoIsInformation
DocumentDownloaded – The document download was requested
FlattenedDocumentDownloaded – The flattened document download was requested
AddedAnnotation – An annotation was added
AddedAttachment – An attachment was added
AppendedDocument – A document was appended
FormsFilled – A form field was filled
ConfirmReading – A reading task was completed
PageViewChanged – The user scrolled
SendTransactionCode – This event is raised, when a TransactionCode for a signature with type TransactionCode* has been sent using the
IdentityServer or the TransactionCodeSenderPlugin
PrepareSignWorkstepDocument – A signature is prepared for signing
SignWorkstepDocument – Try to sign a signature
UndoAction – An action was undone
WorkstepCreated – A workstep was created
WorkstepFinished – A workstep was finished
WorkstepRejected – A workstep was rejected
DisablePolicyAndValidityChecks
EnablePolicyAndValidityChecks
AppendFileToWorkstep – A file was appended to the workstep
AppendTasksToWorkstep – A task was added to the workstep
SetOptionalDocumentState – A optional document became either active or inactive
StartBatch – A batch signing process started
EndBatch – A batch signing process ended
PreparePayloadForBatch – The payload is getting prepared for batch signing

Draft Callbacks

Draft callbacks are fired, if a draft is used or deleted. The draft callback is set in the “CreateDraftOptions” (“AfterSendCallbackUrl”: “”), via the following
call: https://demo.xyzmo.com/Api/v4.0/envelope/create

##DraftId##
#Action##

draftDiscarded
draftSent

Sample:

https://www.mycallback.at?draft=##DraftId##

Error
In general, our REST endpoint returns different HTTP status codes:

200 OK
204 NoContent (response is empty (e.g. download files))
40x return an error code and error info

400 BadRequest (envelope description is incorrect)
401 Unauthorized (User is not authorized)
404 NotFound
415 UnsupportedMediaType

or HTTP 500 for generic server errors

https://demo.xyzmo.com/Api/v4.0/envelope/create

	v5 Api Reference - Introduction REST

