v5 Api Reference - Introduction REST

On this page you will find the eSAW API description. First we start with a basic overview of the API. Before you use the Api Reference, we
recommend you to read the API Documenation, to get an overview about our programming interface, data types and basic concepts. If you are looking
for examples we recommend the Postman Sample, REST Guide and our Stories and Examples.

O Authorization
o UserKey Header Authorization
© Bearer token Authorization
© OrganizationKey and UserLogin Header
0 Creating an organization Key
© Format Specification
O Callbacks
© Callback Types
© Envelope Callback
© Envelope Status Callback
© Workstep Event Callbacks
© Blacklist-Definition
© Whitelist-Definition
© Available Event Types
© Draft Callbacks
© Error

Authorization

This section covers the authorization options for REST-API integrations. For the authorization you have different options with REST API; as described
in the next chapters. If you are authorized you will get a HTTP/200 Ok info. Otherwise you will get a 401 Unauthorized error.

UserKey Header Authorization

We recommend to use user-specific API tokens. Therefore, each user can create several tokens for different application integrations. The apiToken

>20.42
has to be provided as HTTP Header. il

Header Description Example Value

apiToken ' The user specific API token | e.g. "asdfngtmvv8pfmsuaxpzz85zux3e63dd9zttrwitx9min6gka6tds83du3p3Iiroe”

Such an organization key can be created in SettingsAPI Tokens and Apps; Section "API Tokens".

Tokens created by eSAW are currently 66-digit alphanumeric strings - but the length and set of allowed characters may be changed with future
product versions.

The User Key can also be retrieved, for integration scenarios, by implementing an OAuth Authorization Code Flow.

Bearer token Authorization

Currently avaiable for just some API methods (e.g. sspfile/uploadtemporary).

The same key as used for the userKey header authorization can be used as bearer token.

OrganizationKey and UserLogin Header

Authentication can be done also using the userlogin name and an organization-wide organization key in the HTTP headers. We recommend to avoid u

sing organization key authorization in scenarios where the organization key has to be shared with users, as it may be misused to gain access to other
sender's envelopes.

Creating an organization Key

@ To create organization keys in new organizations where the organization was created with software version 21.16 or newer, it is required to
enable the Feature Flag "OrganizationApiToken". On a SaaS environment, Namirial staff will enable that feature per organization on
request. The request needs to come from a user who is granted the Administrator permission in that organization.

https://confluence.namirial.com/display/eSign/v5+API+Documentation
https://confluence.namirial.com/display/eSign/v5+REST+tutorial+using+Postman
https://confluence.namirial.com/display/eSign/v5+Beginner+Guide+REST
https://confluence.namirial.com/display/eSign/v5+eSignAnyWhere+Integration+Stories
https://confluence.namirial.com/display/eSign/eSignAnyWhere+Release+News#eSignAnyWhereReleaseNews-eSignAnyWhere20.42

Such an organization key can be created in SettingsAPI Tokens and Apps; Section "Organization API Tokens". Note that the option to create an
organization key will be invisible, if the instance was set up with a newer product version and the feature flag was not enabled.

Organization APl Tokens

ADD NEW API TOKEN

You will be asked to name the API token. The name of the API token has no functional behavior, it just helps to manage different tokens. We
recommend to create independent tokens for different API integrations. This will allow you to invalidate a token easily in case one external application
did e.g. publish the token by mistake.

Add new APl Token

Please enter a name for the new token

Token for Integration XYZ

CANCEL -

Once completed, the token will be listed, together with other created tokens:

Organization APl Tokens

@ peTAILS

()) DETAILS

Token for Integration XYZ () DETAILS

ADD NEW APl TOKEN

The list view allows you to (temporarily) disable a token with the slider, open a details view, or delete a token permanently.

To read the token value, open the Details view:

Token for Integration XYZ ‘D DETAILS 'n_]]'

Mame

Token for Integration XYZ

Organization Token

Irl9gursv3de741ed1 gyfopwilos308s @

SAVE

ADD NEW APl TOKEN

With the copy-button next to the "Organization Token" field, the token can be copied to the Windows Clipboard and inserted in your business
application or integration configuration.

Be careful, handle the token like an organization wide password! Keep in mind that the token allows wide access to your organization's configuration
and documents.

Format Specification

Note that the key can be any 32digit alphanum value; not necessarily following the GUID format! The length and set of allowed characters may be
changed with future product versions.

Header Description Example Value
Organizati = The organization wide token e.g. "1234abcd-1a2b-fedc-01a3-9876bal2cdef" or
onKey "abxdz1m8a805lhg4awnfkx8jsbrigsup”
UserLogin ' The user name (=email address) of the user who has access to the john.doe@example.com
Name data (e.g.: sender of an envelope)

Callbacks

The API allows the definition of several callbacks. Please note, that only the envelope callback (directly from eSignAnyWhere) is fired, when the
envelope is in a final state. The status update callback is fired by a sub-component and you may require to wait a post-processing time that the
envelope reaches its final state.

In general: eSignAnyWhere is calling the Callback URL 30 times. With the timeout this should be enough to recover if the called system is down for a
few minutes.

1st callback sent

2nd callback after 5min (only previous fails of course, e.g. does not get a "200" back)
3rd callback after 10min after the previous one (so 15min after the 1st)

4th callback after 15min after the previous one (so 30min after the 1st)

xth callback after 30min after the previous one

Callback Types

Envelope Callback
Envelope Status Callback
Workstep Event Callback
Draft Callbacks

Envelope Callback

This is the basic callback (“CallbackUrI": *"), which is fired if the envelope reaches a final state (completed, rejected). If you integrate eSAW, please
have a look at the Envelope Status Callback (directly below documented), because it might deliver more details about the envelope and might so be
more useful for integrating.

Placehoder

® ##Envelopeld##
® ##Action##
© envelopeFinished : when an envelope was finished (completed or rejected)

Sample:

https://ww. nycal | back. at ?envel ope=##Envel opel d##

Envelope Status Callback

Envelopes status callbacks (“StatusUpdateCallbackUrI": “")) are fired, based on envelope events/actions. There are also detailed callbacks available
based on events.

Consider, that our system expects the full callback url, including the parameter list you expect, with the placeholders that should be replaced by values
at runtime. You can also add your own paramter for that envelope (e.g. internal references). Moreover, on our shared SaaS environments only HTTPS
(port 443) callbacks are allowed.

Placeholder for callback URL:

* ##Envelopeld##
® {HtAction##
o workstepFinished : when the workstep was finished
workstepRejected : when the workstep was rejected
workstepDelegated : whe the workstep was delegated
workstepOpened : when the workstep was opened
sendSignNotification : when the sign notification was sent
envelopeExpired : when the envelope was expired
workstepDelegatedSenderActionRequired : when an action from the sender is required because of the delegation

O O O O O O

Consider, that our system expects the full callback url, including the parameter list you expect, with the placeholders that should be replaced by values
at runtime. You can also add your own paramter for that envelope (e.g. internal references). Moreover, on our shared SaaS environments only HTTPS
(port 443) callbacks are allowed.

Sample:

https://ww. nmycal | back. at ?envel ope=##Envel opel d##&act i on=##Act i on##

Sample with custom parameter “internalid*:

https://lwww.mycallback.at?envelope=##Envelopeld##&action=##Action##&internalid=1234

Workstep Event Callbacks

The workstep event callbacks are specific event callbacks fired on events caused by the underlying "SIGNificant Server Platform" component, but also
routed through the notification system of eSignAnyWhere. Those callbacks inform in a way more detailled way about the workstep events - but note
that those events are not necessarily time-synced to the envelope events. To trigger activities on the eSignAnyWhere API, always consider the
envelope or envelope status callbacks.

http://www.mycallback.at?envelope=##EnvelopeId##&action=##Action##&internalid=1234

@ Detailed callbacks on specific events

Note: You can configure a proxy for all callbacks. Please see the next sample:

<cal | backProxySettings>

<l-- Enable or disable the use of proxy for all callbacks. Values 1 (enabled) or O (disabled)--

>
<enabl ed>0</ enabl ed>
<l-- Address of the proxy server-->
<addr ess></ addr ess>

<l-- Send all callbacks to | ocal addresses w thout using proxy. Values 1 (bypass for local) or

0 (al ways use proxy)-->

<I-- Local requests are identified by the lack of a period (.) inthe URI, as in
http://webserver/, or access the local server, including http://local host, http://I| oopback, or
http://127.0.0.1-->

<bypassPr oxyOnLocal >0</ bypassProxyOnLocal >

<net wor kCr edent i al s>

<!-- Domain for Credentials-->
<donai n></ donmai n>
<l-- Usernane for Credentials-->

<user nane></ user nane>

<l-- Password for Credentials. If password is not encrypted then renpve the attribute enc-->

<password enc="sec2"></passwor d>
</ net wor kCr edent i al s>
</ cal | backProxySettings>

You can forward all eventtyps to your callback url or use the follwing:

® blacklist: all events, except the events in the blacklist, are fired
* whitelist: only the events in the whitelist are fired
* empty blacklist/whitelist: all events are fired

Do not use blacklist and whitelist at the same time! If you only want to use the event callbacks, use an empty envelope callback in the configuration (<c

al | backUrl />)
The following placeholders are defined:

##Workstepld## — workstep of current action
#tEventType## — type of event (see list of types below)
##Source## — internal (eSAW) or external (Viewer)
##Time## — time when the action occurred
##Description## — textual description of the event
##RecipientEmail## — emailadress of current recipient
##Envelopeld## — current envelope id
##RecipientOrder## — index of current recipient

Please also see the available event types for the blacklist and whitelist definitions below.

Definition without black-/whitelist:

"Wor kst epEvent Cal | back": {
"Url": "http://ww.nycal | back. at ?
envel opel d=##Envel opel d##&r eci pi ent Emai | =##Reci pi ent Enui | ##&r eci pi ent O der =##Reci pi ent O der ##"
b

<envel ope>

<wor kst epEvent Cal | back>
<url >http://ww. nycal | back. at ?
envel opel d=##Envel opel d##& eci pi ent Emai | =##Reci pi ent Emai | ##&r eci pi ent Or der =##Reci pi ent Or der ##</ ur | >
</ wor kst epEvent Cal | back>
<steps>
</ st eps>
</ envel ope>

Blacklist-Definition

" St at usUpdat eCal | backUr1": "string",
"Wor kst epEvent Cal | back": {
"Url": "http://ww.nycal | back. at ?

envel opel d=##Envel opel d##&r eci pi ent Emai | =##Reci pi ent Enmi | ##&r eci pi ent O der =##Reci pi ent O der ##",
"Blacklist": [
"string"
]
H

<wor kst epEvent Cal | back>
<url >http://ww. nycal | back. at ?
envel opel d=##Envel opel d##& eci pi ent Emai | =##Reci pi ent Emai | ##&r eci pi ent Or der =##Reci pi ent Or der ##</ ur | >
<bl ackl i st >
<event >SormeEvent Nanme</ event >
<event >SoneDi f f er ent Event Nane</ event >
</ bl ackl i st>
</ wor kst epEvent Cal | back>

Whitelist-Definition

" St at usUpdat eCal | backUr1": "string",
"Wor kst epEvent Cal | back": {
"Url": "http://ww.nycal |l back. at ?

envel opel d=##Envel opel d##&r eci pi ent Emai | =##Reci pi ent Enmi | ##&r eci pi ent O der =##Reci pi ent O der ##",
"WhiteList": [
"string"
]
H

<wor kst epEvent Cal | back>
<url >http://ww. nycal | back. at ?
envel opel d=##Envel opel d##& eci pi ent Emai | =##Reci pi ent Emai | ##&r eci pi ent Or der =##Reci pi ent Or der ##</ ur | >
<whitelist>
<event >SomeEvent Nanme</ event >
<event >SoneDi f f er ent Event Nane</ event >
</whitelist>
</ wor kst epEvent Cal | back>

Please also see the following complete configuration:

"SspFilelds": [
"H##Fi | el d##"
]

ndEnvel opeDescri ption": {

"Name": "test",
"Emai | Subj ect": "Please sign the enclosed envel ope",
"Emai | Body": "Dear #Reci pi entFirstNanme# #Reci pi ent Last Nane#\ n\ n#Per sonal Message#\ n\ nPl ease sign the
envel ope #Envel opeNanme#\ n\ nEnvel ope wi || expire at #ExpirationDate#",
"Di spl ayedEmai | Sender": "",
"Enabl eRemi nders": true,
"Fi rst Rem nder DayAnount": 5,
"Recurrent Rem nder DayAmount ": 3,
" Bef or eExpi rati onDayAnount": 3,
"DaysUntil Expire": 28,
"Cal | backUr|": "",
" St at usUpdat eCal | backUrl": ",
"Wor kst epEvent Cal | back": {
"Url": "http://ww.nycal | back. at ?
envel opel d=##Envel opel d##& eci pi ent Emai | =##Reci pi ent Emai | ##&r eci pi ent O der =##Reci pi ent Or der ##",
"WhiteList": [
"string"
]
b
"Steps": [
{
"Order |l ndex": 1,
"Reci pients": [
{
"Emai | " "H#HEMAI L##"
"FirstName": "##NAVE##",
"Last Nane": "##NAVE##",
"LanguageCode": "en",
"Emai | BodyExtra": "",
"Di sabl eEmai | ": fal se,
" AddAndr oi dAppLi nk": fal se,
" Addl osAppLi nk": fal se,
" AddW ndows AppLi nk": fal se,
"Al | owDel egation": false,
"Al | owAccessFi ni shedWorkstep": fal se,
" Ski pExt er nal Dat aval i dati on": fal se,
"Aut hent i cati onMet hods": [
{
"Met hod": "Pin",
"Paraneter": "1234"
}
]
}
1,
"Emai | BodyExtra": "",
"Reci pi ent Type": "Signer",
"Wor kst epConfiguration": {
"Wor kst epLabel ": "test",
" Smal | Text ZoonFact or Percent": 100,
"Fini shAction": {
"ServerActions": [],
"CientActions": []
b
"Recei verlnformation": {
"UserInformation": {
"FirstName": "##NAVE##",
"Last Nane": " ##NAVE##",
"EMai | " " #H#EMAI L##"
H
"Transact i onCodePushPl ugi nData": []
b
"Sender | nformation": {
"UserInformation": {
"FirstName": "##NAVE##",
"Last Nane": " ##NAVE##",
"EMai | " " #H#EMAI L##"
}
b
"Transacti onCodeConfigurations": [

{

"1d": "snsAut hTransacti onCodel d",
"HashAl gorithm dentifier": "Sha256",
"Texts": [

]
}
1.
" SignatureConfigurations": [],
"Vi ewer Pref erences": {
"Fi ni shwor kst epOnOpen”: fal se,
"Vi si bl eAreaOptions": {
"Al | onedDomai n": "*",
"Enabl ed": fal se
}
b
"ResourceUris": {

"Si gnaturel magesUri": "string"
H
"Audi tingTool sConfiguration": {

"WiteAuditTrail": false,

"NotificationConfiguration": {}

3
"Policy": {
"Ceneral Policies": {
"Al | owSaveDocunent": true,
"Al | owSaveAudit Trail": true,
"Al' | owRot ati ngPages": fal se,
"Al | owEmai | Docunent": true,
"Al |l owPri nt Docunent": true,
"Al'l owFi ni shworkstep": true,
"Al'l owRej ect Wor kst ep": true,
"Al'l owRej ect Wr kst epDel egation": fal se,
"Al | owUndoLast Action": false,
" Al | owAdhocPdf Att achnents": fal se,
" Al | owAdhocSi gnatures": fal se,
"Al | owAdhocSt anpi ngs": fal se,
" Al | owAdhocFr eeHandAnnot ati ons": fal se,
"Al | owAdhocTypewr iterAnnotations": false,
" Al | owAdhocPi ct ureAnnot ati ons": fal se,
" Al | owAdhocPdf PageAppendi ng": fal se
}

rkstepTasks": {
"Pi ctureAnnot ati onM nResol ution": 0,
"Pi ct ur eAnnot at i onMaxResol ution": 0,
"Pi ct ureAnnot ati onCol or Dept h": " Col or 16M',
"SequenceMdde": "NoSequenceEnforced",
"PositionUnits": "PdfUnits",

"Ref erenceCorner": "Lower_Left",
"Tasks": [
{
"Texts": [
{
"Language": "*",
"Val ue": "Signature Disclosure Text"
b
{
"Language": "en",
"Val ue": "Signature Disclosure Text"
}
1.
"Headi ngs": [
{
"Language": "*",
"Val ue": "Signature Disclosure Subject”
b,
{
"Language": "en",
"Val ue": "Signature Disclosure Subject”
}
|

sRequired": false,

“ld": "ra",

"Di spl ayNanme": "ra",

" DocRef Nunber": 1,
"DiscrimnatorType": "Agreenents"

"PositionPage": 1,

"Position": {
"PositionX": 63.0,
"PositionY': 603.0

3
"Size": {
"Height": 80.0,
"Wdth": 190.0
b
"Addi tional Paraneters": [
{
"Key": "enabl ed",
"Val ue": "1"
b
{
"Key": "positioning",
"Val ue": "onPage"
},
{
"Key": "req",
"Val ue": "1"
H
{
"Key": "fd",
"Val ue": ""
},
{
"Key": "fd_dateformat",
"Val ue": "dd- MHyyyy HH mm ss"
H
{
"Key": "fd_tinezone",
"Val ue": "datetineutc"
},
{
"Key": "spcld",
"Val ue": "tlLevelld"
}
1.
"Al | onedSi gnat ureTypes": [
{
"Al' | owedCapt uri ngMet hod": "dick2Sign",
"1d": "679dd763- 6e25- 4a68-929d-cblcel3dac7e",
"Di scrimnatorType": "SigTypedick2Sign",
"Preferred": false,
" St anpl nprint Configuration": {
"Di spl ayExtral nformation": true,
"Di splayEmai | ": true,
"Di splaylp": true,
"Di spl ayNane": true,
"Di spl aySi gnatureDate": true,
"FontFami ly": "Tines New Roman",
"Font Si ze": 11.0
}
}
|

eTi mestanp”: fal se,
"I sRequi red": true,
"1d": "1#XyznmoDupli cat el dSeper at or #Si gnat ur e_ale940eb- bcd5- 2222- 9777- f 3570f aedf 3f ",
"Di spl ayNanme": "",
" DocRef Number": 1,
"Di scrimnatorType": "Signature"

}

"Navi gation": {
"HyperLinks": [],
"Links": [],
"LinkTargets": []

}

I
"Docunent Options": [

{

"Docunent Ref erence": "1",
"l sHi dden": false

}

]

UseDef aul t Agr eenents": true

"Order |l ndex": 2,
"Recipients": [
{
"Emai | " "##EMAI L##",
"FirstNane": "##NAVE##",
"Last Nanme": "##NAVE##",
"LanguageCode": "en",
"Emai | BodyExtra": "",
"Di sabl eEmai | ": fal se,
" AddAndr oi dAppLi nk": fal se,
" Addl osAppLi nk": fal se,
" AddW ndowsAppLi nk": fal se,
"Al |l owDel egation": false,
" Ski pExt er nal Dat aval i dati on": fal se,
" Aut hent i cati onMet hods": []
}

1,
"Emai | BodyExtra": "",

"Reci pi ent Type": "Cc",
"Docunent Options": [],
"UseDef aul t Agreenents": false
}
I
" AddFor nFi el ds": {
"Fornms": {}
},
"OverrideFornFi el dval ues": {
"Fornms": {}
}

"Att achSi gnedbDocunent sToEnvel opeLog": fal se

These events are fired by the Workstep Controller (internal component) and are fired before the data in eSAW is complete updated (some
postprocessing is required). Therefore this event callbacks are used only in rare integrations.

Available Event Types

ConfirmTransactionCode — A transaction code was sent

DefaultEventType — Not specially defined event type

AgreementAccepted — The user accepted the agreement

AgreementRejected — The user rejected the agreement
RequestPrepareAuthenticationinformationSuccess — The request for additional authentication infos was requested
PrepareAuthenticationSuccess — The prepare authentication process succeeded
AuthenticationFailed — The user failed to authenticate

AuthenticationRejected — The user rejected the authentication process
AuthenticationSuccess — The user succeeded to authenticate
ReAuthenticationFailed — The reauthentication process failed

AuditTrailRequested — The audittrail was requested

AuditTrailXmIRequested — The audittrail XML was requested

CalledPage — The viewer site was requested

WholsInformation

DocumentDownloaded — The document download was requested
FlattenedDocumentDownloaded — The flattened document download was requested
AddedAnnotation — An annotation was added

AddedAttachment — An attachment was added

AppendedDocument — A document was appended

FormsFilled — A form field was filled

ConfirmReading — A reading task was completed

PageViewChanged — The user scrolled

SendTransactionCode — This event is raised, when a TransactionCode for a signature with type TransactionCode* has been sent using the
IdentityServer or the TransactionCodeSenderPlugin
PrepareSignWorkstepDocument — A signature is prepared for signing
SignWorkstepDocument — Try to sign a signature

UndoAction — An action was undone

WorkstepCreated — A workstep was created

WorkstepFinished — A workstep was finished

WorkstepRejected — A workstep was rejected

DisablePolicyAndValidityChecks

EnablePolicyAndValidityChecks

AppendFileToWorkstep — A file was appended to the workstep
AppendTasksToWorkstep — A task was added to the workstep
SetOptionalDocumentState — A optional document became either active or inactive
StartBatch — A batch signing process started

EndBatch — A batch signing process ended

PreparePayloadForBatch — The payload is getting prepared for batch signing

Draft Callbacks

Draft callbacks are fired, if a draft is used or deleted. The draft callback is set in the “CreateDraftOptions” (“AfterSendCallbackUrI": “"), via the following
call: https://demo.xyzmo.com/Api/v4.0/envelope/create

® ##Draftld##

® #Action##
© draftDiscarded
o draftSent
Sample:

https://ww. nycal | back. at ?dr af t =##Dr af t | d##

Error

In general, our REST endpoint returns different HTTP status codes:

® 200 OK
® 204 NoContent (response is empty (e.g. download files))
® 40x return an error code and error info
© 400 BadRequest (envelope description is incorrect)
© 401 Unauthorized (User is not authorized)
© 404 NotFound
© 415 UnsupportedMediaType
® or HTTP 500 for generic server errors

https://demo.xyzmo.com/Api/v4.0/envelope/create

	v5 Api Reference - Introduction REST

