
v5 Developer FAQ
eSignAnyWhere offers you an and a interface. It uses authentication and XML for the datastructures. See our for the SOAP REST API documentation
basic information about our interfaces. Most programming languages offer you simple SOAP/REST interfaces moreover for the beginning you may start
with , a webservice testing tool.SoapUI
There are two possibilities to customize the UI

eSignAnyWhere UI for Signers: you can customize it by changing the template
eSignAnyWhere UI for Users (Backoffice): this can just be done in a private cloud instance or on premise. For more information .contact us

You can configure and for your eSignAnyWhere signers. It may also helpful if you have a look in the .email templates languages user guide settings section
There is an available.envelope XML guide
You can prefill PDF form field with values via API. The following API methods are supported:

SendEnvelope_v1
SendEnvelopeFromTemplate_v1
CreateDraft_v1
CreateDraftFromTemplate_v1

XML Configuration for prefill PDF forms:

<envelope>
 ...
 <overrideFormFieldValues>
 <document docRef="1">
 <textBox name="formId">
 <value>textBoxValue</value>
 </textBox>
 <listBox name="formId">
 <selectedItems>
 <selectedItemId>selectedItem1</selectedItemId>
 <selectedItemId>selectedItem2</selectedItemId>
 </selectedItems>
 </listBox>
 <radioButtonGroup name="formId">
 <selectedItemId>selectedItem</selectedItemId>
 </radioButtonGroup>
 <checkBox name="formId">
 <isChecked>true|false|0|1</isChecked>
 </checkBox>
 <comboBox name="formId">
 <value>comboBoxValue</value>
 </comboBox>
 </document>
 </overrideFormFieldValues>
 ...
</envelope>

Yes, just add two ore more documents within the tag in the API call SendEnvelope_v1:

 <sspFileIds>
 <string>First document</string>
 <string>Second document</string>
 </sspFileIds>

After this configuration you can send an envelope as usual but with multiple documents.
First you have to create a draft () and configure the option to allow an external designer ().CreateDraft_v1 allowAgentRedirect

XML Configuration

<draftOptions>
 ...
 <allowAgentRedirect>true</allowAgentRedirect>
 <iFrameWhiteList>http://172.16.17.256;http://foo.org</iFrameWhiteList>
 ...
</draftOptions>

https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/Representational_state_transfer
https://confluence.namirial.com/display/eSign/API+Documentation
https://www.soapui.org/
https://confluence.namirial.com/display/eSign/SignAnyWhere+Viewer+-+Customization
https://www.esignanywhere.net/contact/
https://confluence.namirial.com/display/eSign/User+Guide
https://confluence.namirial.com/display/eSign/User+Guide
https://confluence.namirial.com/display/eSign/User+Guide
https://confluence.namirial.com/display/eSign/The+Envelope+XML

The option enables an anonymous designer integration (without eSignAnyWhere Login) and extends the allowAgentRedirect iFrameWhiteList
HTTP header with a list to integrate in your web application or portal (via).X-FRAME-OPTIONS

The designer can be embedded by modifing the following string:

http://www.significant.com/AgentRedirect/index?draftid=#envelopeid#

If the draft is finished you can start the envelope.
If you don’t want to send an email to a specific recipient, you just have to add the following configuration to the envelope XML (<disableEmail>True<

):/disableEmail>

Simple Example:

...
<recipient>
 <languageCode>en</languageCode>
 <eMail>recipient@email.com</eMail>
 <firstName>Firstname</firstName>
 <lastName>Lastname</lastName>
 ...
 <disableEmail>True</disableEmail>
 ...
 <!-- optional authentication methods for this recipient -->
</recipient>
...

eSignAnyWhere it calling the Callback URL 30 times. With the timeout this should be enough to recover if the called system is down for a few minutes.
You can modify the message and also the language of the SMS OTP sent via API.

Following types can be defined (inclusive max character length - GSM-7 (3GPP TS 23.038 / GSM 03.38) standard):

smsAuthTransactionCodeId (SMS Authentication Message)
Text (excluding placeholders) must not be longer than 146 characters. (If any character not-compliant to the standard will be used, the
limit is reduced to 52!)

disposableCertificateEnrolAndSignSmsText (Disposable Certificate Message)
Text (excluding placeholders) must not be longer than 150 characters. (If any character not-compliant to the standard will be used, the
limit is reduced to 60!)

remoteCertificateSignSmsText (Remote Certificate Message)
Text (excluding placeholders) must not be longer than 150 characters. (If any character not-compliant to the standard will be used, the
limit is reduced to 60!)

otpSignatureSmsText (SMS OTP-Signature Message)
Text (excluding placeholders) must not be longer than 146 characters. (If any character not-compliant to the standard will be used, the
limit is reduced to 52!)

swissComSign
Text must not be longer than 160 characters. (If any character not-compliant to the standard will be used, the limit is reduced by half!)

bankIdSignText
Text must not be longer than 160 characters. (If any character not-compliant to the standard will be used, the limit is reduced by half!)

Please note the following: The tag {tId} (Transaction ID) and {Token} (Token) must be defined in the message. If you do not define a language attribute,
this will be used as fallback or specified language or recipient does not exists.

Please see the following sample configuration for an otp signature:

{
 "SspFileIds": [
 "e686d325-1234-1234-1234-f33cc522f38c"
],
 "SendEnvelopeDescription": {
 "Name": "test",
 "DisplayedEmailSender": "",
 "EnableReminders": true,
 "FirstReminderDayAmount": 5,
 "RecurrentReminderDayAmount": 3,
 "BeforeExpirationDayAmount": 3,
 "ExpirationInSecondsAfterSending": 2419200,
 "CallbackUrl": "",
 "StatusUpdateCallbackUrl": "",
 "LockFormFieldsAtEnvelopeFinish": false,
 "Steps": [
 {
 "OrderIndex": 1,
 "Recipients": [
 {

 "Email": "##Email##",
 "FirstName": "##Name##",
 "LastName": "##Name##",
 "LanguageCode": "en",
 "EmailBodyExtra": "",
 "DisableEmail": false,
 "AddAndroidAppLink": false,
 "AddIosAppLink": false,
 "AddWindowsAppLink": false,
 "AllowDelegation": true,
 "AllowAccessFinishedWorkstep": false,
 "SkipExternalDataValidation": false,
 "AuthenticationMethods": [],
 "IdentificationMethods": [],
 "OtpData": {
 "PhoneMobile": "##PhoneNumber##"
 }
 }
],
 "EmailBodyExtra": "",
 "RecipientType": "Signer",
 "WorkstepConfiguration": {
 "WorkstepLabel": "test",
 "SmallTextZoomFactorPercent": 100,

 "TransactionCodeConfigurations": [
 {
 "Id": "otpSignatureSmsText",
 "HashAlgorithmIdentifier": "Sha256",
 "Texts": [
 {
 "Language": "en",
 "Value": "This is for testing porpuses only with the transactionId {tId}. Your code is: {Token}"
 }
]
 }
],
 "SignatureConfigurations": [],
 "ViewerPreferences": {
 "FinishWorkstepOnOpen": false,
 "VisibleAreaOptions": {
 "AllowedDomain": "",
 "Enabled": false
 }
 },
 "ResourceUris": {
 "DelegationUri": "https://demo.esignanywhere.net/Resource/Delegate"
 },
 "AuditingToolsConfiguration": {
 "WriteAuditTrail": true
 },
 "Policy": {
 "WorkstepTasks": {
 "PictureAnnotationMinResolution": 0,
 "PictureAnnotationMaxResolution": 0,
 "PictureAnnotationColorDepth": "Color16M",
 "SequenceMode": "NoSequenceEnforced",
 "PositionUnits": "PdfUnits",
 "ReferenceCorner": "Lower_Left",
 "Tasks": [
 {
 "Texts": [
 {
 "Language": "en",
 "Value": "Agreement text"
 },
 {
 "Language": "*",
 "Value": "Agreement text"
 }
],

 "Headings": [
 {
 "Language": "en",
 "Value": "Agreement Subject"
 },
 {
 "Language": "*",
 "Value": "Agreement Subject"
 }
],
 "IsRequired": false,
 "Id": "ra",
 "DisplayName": "ra",
 "DocRefNumber": 1,
 "DiscriminatorType": "Agreements"
 },
 {
 "PositionPage": 1,
 "Position": {
 "PositionX": 58.0,
 "PositionY": 593.0
 },
 "Size": {
 "Height": 80.0,
 "Width": 190.0
 },
 "AdditionalParameters": [
 {
 "Key": "enabled",
 "Value": "1"
 },
 {
 "Key": "completed",
 "Value": "0"
 },
 {
 "Key": "req",
 "Value": "1"
 },
 {
 "Key": "isPhoneNumberRequired",
 "Value": "0"
 },
 {
 "Key": "trValidityInSeconds",
 "Value": "60"
 },
 {
 "Key": "fd",
 "Value": ""
 },
 {
 "Key": "fd_dateformat",
 "Value": "dd-MM-yyyy HH:mm:ss"
 },
 {
 "Key": "fd_timezone",
 "Value": "datetimeutc"
 }
],
 "AllowedSignatureTypes": [
 {
 "TrModType": "TransactionCodeSenderPlugin",
 "TrValidityInSeconds": 300,
 "TrConfId": "otpSignatureSmsText",
 "IsPhoneNumberRequired": false,
 "Ly": "simpleTransactionCodeSms",
 "Id": "84dc05ed-1234-1234-1234-fbc776faa439",
 "DiscriminatorType": "SigTypeTransactionCode",
 "Preferred": false,
 "SignaturePluginConfigurationId": ""

 }
],
 "UseTimestamp": false,
 "IsRequired": true,
 "Id": "1#XyzmoDuplicateIdSeperator#Signature_f96c9889-1234-1234-4c9c-f774add0d46b",
 "DisplayName": "",
 "DocRefNumber": 1,
 "DiscriminatorType": "Signature"
 }
]
 }
 }
 },
 "DocumentOptions": [
 {
 "DocumentReference": "1",
 "IsHidden": false
 }
]
 }
],
 "AttachSignedDocumentsToEnvelopeLog": false
}
}

The easiest way to implement the TransactionCodeConfiguration in SOAP is to call the GetAdHocWorkstepConfiguration_v1 to receive a default workstep
for the document or you can modify it directly via API (see sample below).

 <TransactionCodeConfigurations>
 <!--Single TransactionCodeConfiguration.-->
 <TransactionCodeConfiguration trConfId="smsAuthTransactionCodeId">
 <!--Message used to send a transaction code to the client. The message has to contain the placeholder
'{tId}' for the transactionId and the placeholder '{Token}' for the token.-->
 <Message>Please authenticate yourself for the access to the envelope with the transactionId {tId}. Your
code is: {Token}</Message>
 <hashAlgorithmIdentifier>Sha256</hashAlgorithmIdentifier>
 </TransactionCodeConfiguration>
 <TransactionCodeConfiguration trConfId="smsAuthTransactionCodeId" language="en">
 <Message>Please authenticate yourself for the access to the envelope with the transactionId {tId}. Your
code is: {Token}</Message>
 <hashAlgorithmIdentifier>Sha256</hashAlgorithmIdentifier>
 </TransactionCodeConfiguration>
 <TransactionCodeConfiguration trConfId="smsAuthTransactionCodeId" language="it">
 <Message>Con riferimento alla transazione {tId}, per autenticarsi si prega di inserire il seguente CODICE
{Token}</Message>
 <hashAlgorithmIdentifier>Sha256</hashAlgorithmIdentifier>
 </TransactionCodeConfiguration>
 <TransactionCodeConfiguration trConfId="disposableCertificateEnrolAndSignSmsText">
 <Message>Please confirm the issuance of your disposable certificate and signature, referenced by
transactionId {tId}, with the OTP: </Message>
 <hashAlgorithmIdentifier>Sha256</hashAlgorithmIdentifier>
 </TransactionCodeConfiguration>
 <TransactionCodeConfiguration trConfId="disposableCertificateEnrolAndSignSmsText" language="en">
 <Message>Please confirm the issuance of your disposable certificate and signature, referenced by
transactionId {tId}, with the OTP: </Message>
 <hashAlgorithmIdentifier>Sha256</hashAlgorithmIdentifier>
 </TransactionCodeConfiguration>
 <TransactionCodeConfiguration trConfId="disposableCertificateEnrolAndSignSmsText" language="it">
 <Message>Conferma l'emissione del tuo certificato disposable, con riferimento alla transazione {tId}, e
della firma con lÂ´OTP </Message>
 <hashAlgorithmIdentifier>Sha256</hashAlgorithmIdentifier>
 </TransactionCodeConfiguration>
 <TransactionCodeConfiguration trConfId="remoteCertificateSignSmsText">
 <Message>Please sign the document, referenced by transactionId {tId}, using the OTP: </Message>
 <hashAlgorithmIdentifier>Sha256</hashAlgorithmIdentifier>
 </TransactionCodeConfiguration>
 <TransactionCodeConfiguration trConfId="remoteCertificateSignSmsText" language="en">
 <Message>Please sign the document, referenced by transactionId {tId}, using the OTP: </Message>
 <hashAlgorithmIdentifier>Sha256</hashAlgorithmIdentifier>
 </TransactionCodeConfiguration>
 <TransactionCodeConfiguration trConfId="remoteCertificateSignSmsText" language="it">
 <Message>Firma il documento, con riferimento alla transazione {tId}, usando lÂ´OTP </Message>
 <hashAlgorithmIdentifier>Sha256</hashAlgorithmIdentifier>
 </TransactionCodeConfiguration>
 </TransactionCodeConfigurations>

If you have a finished envelope (all recipients finished) and the state of the evelope is still “in Progress”, the reason could be the post processing (the
callback). The callback expects a HTTP 200 and if an error is retured it tries to call the callback after some time again (up to 30 times). This could delay the
“finished” or “error” of the envelope.
The problem is, that the envelope is not yet in the correct status.
The current status is “Started”. This means, that the link for the first recipient is not yet being created.

You have to wait until the status is “InProgress”.

Another option would be to either…

set “ ” on the recipientsuppressEmails
or to check “ ” on the organization (using the Admin Web site)Prevent emails from being sent :

Then the link will be generated immediately when calling .SendEnvelope_v1

If you use regular notifications (emails), the link is sent to the recipient as soon as the Workstep is ready.
You can define a reading task, so that the signer has to confirm the reading of the envelope. Details about the configuration you find in the Reading Task

.Guide
Yes, you can store your own meta data in the envelopes.

https://confluence.namirial.com/display/eSign/v5+Beginner+Guide+REST+and+SOAP
https://confluence.namirial.com/display/eSign/v5+Beginner+Guide+REST+and+SOAP

<envelope>
 <metaData>
 <element>custom data</element>
 </metaData>
</envelope>

The element allows you to store additional, non-eSAW-data (e.g. for archiving) directly in the envelope. You can retrieve this information via metaData get
 call. An example of metaData is to store data for the archiving system in the envelope. The callback-integrating solution then can EnvelopeById

download the files (PDF & Audit-Trail) and store them directly in the archive.

Envelope Bulk

Draft
Not sent envelope

Canceled
Envelope which was canceled by the . (final state).sender

Completed
Envelope which does not need any more actions (final state).

Expired
Envelope reached expiration date. Can be restarted with a new
expiration date.

Rejected
Rejected by one of the envelope .recipient

Template
Template which can be used to create envelopes with a given
configuration.

ActionRequired
Waiting for your action.

WaitingForOthers
Waiting for actions of other recipients.

ExpiringSoon
The expiration date will soon the be reached.

InProgress
The envelope is in progress, waiting for next recipient in the
order to do his/her action.

Draft
Not sent envelope

Canceled
Envelope which was canceled by the . (final state).sender

Completed
Envelope which does not need any more actions (final state).

Expired
Envelope reached expiration date. Can be restarted with a new
expiration date.

Rejected
Rejected by one of the envelope .recipient

Template
Template which can be used to create envelopes with a given
configuration.

Started
The envelope was started but needs to setup further metrics to
the into status InProgress

CompletedWithWarnings
Warnings concerning long lived disposable

BulkCompleted
All envelopes of a bulk are completed

BulkPartlyCompleted
Not all envelopes of a bulk are completed

InProgress
The envelope is in progress, waiting for next recipient in the order
to do his/her action.

eSAW supports to send out links for the SIGNificant products automatically via notifications. Therefore you just have to add to the recipient configuration
(XML) the following parameters:

<envelope>
 <steps>
 <step>
 <recipients>
 <recipient>
 <addAndroidAppLink>0</addAndroidAppLink> <!-- 0 or 1 -->
 <addIosAppLink>0</addIosAppLink> <!-- 0 or 1 -->
 <addWindowsAppLink>0</addWindowsAppLink> <!-- 0 or 1 -->
 </recipient>
 </recipients>
 </step>
 </steps>
</envelope>

Otherwise you can connect one workstep of eSignAnyWhere with one of the SIGNificant Apps. First you call the with the GetEnvelopeById_v1 envelop
 you got in sendEnvelope_v1. In the result you will find the . This URL forwards the SignAnywhere Viewer (Web-Client), eID workstepRedirectionURL

but with the additional parameter it returns the workstepId. Example:&responseType=returnWorkstepId

https://demo.xyzmo.com/workstepredirector/sign?identifier=8WNDxmUVr5V/aV1AAN49xjKuVsHMQEIQVuM
/ktLNw1jOfWgaovF2mDg3uW9JJbp5Q/k7Yz92eoo=&responseType=returnWorkstepId

With this WorkstepId you can now connect the SIGNificant product to the document. If the document is finsihed the workflow continues automatically.

Other parameters are:

responseType=redirectToViewer – redirects to SAW Viewer (default)
responseType=redirectToAndroidApp – redirects to Android App
responseType=redirectToIOsApp – redirects to iOS App
responseType=redirectToWindowsApp – redirects to Windows App

responseType=returnWorkstepId – returns the WorkstepId for other integration types

If you want to get a callback on specific events, e.g. when a signer rejects the agreement, you can use the following guide.
If you upload a PDF/A document to eSignAnyWhere it stays through the workflow a PDF/A valid document. If you are starting with a non-PDF/A document,
the final document will be also a non-PDF/A document.
Yes, you may use our SigStrings to place signature fields in documents. You just have to type a string (the simplest version:) in the document and `sig`
eSignAnyWhere is placing a signature field for you automatically. Here you get more .information about our placeholders

If you want to use more complex tags (e.g. for form fields, radio buttons, etc.) you may be interested in our advanced tags. This can be found in our Placeh
 and moreover a look into the function. This function can be helpful for integrations.older Use Case PrepareSendEnvelopeSteps_v1

This is typically caused by an outdated Adobe Reader with not update-to-date certificates. Please install a new version or perform an update of the
certificates (Settings > Trust Manager > Update AATL/EUTL).

https://confluence.namirial.com/display/eSign/v5+Api+Reference+-+Introduction+REST
https://confluence.namirial.com/display/eSign/Use+Advanced+Document+Tags+to+insert+Form+Elements+or+Signature+Fields
https://confluence.namirial.com/display/eSign/Use+Advanced+Document+Tags+to+insert+Form+Elements+or+Signature+Fields
https://confluence.namirial.com/display/eSign/Use+Advanced+Document+Tags+to+insert+Form+Elements+or+Signature+Fields
https://www.esignanywhere.net/esignature-api/api-documentation/api-reference/

	v5 Developer FAQ

